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Solar energetic particle precipitation (EPP)

Earth’s magnetic field directs charged particles into polar regions

EPP affects both ionosphere and middle atmosphere
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Effects of energetic particle precipitation (EPP)

energetic particles precipitate into atmosphere
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Mesospheric odd hydrogen: indicator of EPP

• nighttime HOx (= H + OH + HO2) concentration is relatively low.
=⇒ It can be enhanced by moderate EPP forcing.

• HOx has a relatively short chemical lifetime (hours) below ≈ 80 km.
=⇒ Returns quickly to normal values after EPP forcing stops.

Odd hydrogen follows closely
increases and decreases of EPP forcing

• In the case of major solar proton events, HOx increases are relatively easy
to detect due to the large fluxes and polar cap coverage of the forcing.
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Role of electron precipitation below 80 km

• Compared to solar proton events, electron precipitation typically has smaller fluxes, more

temporal variability, and it affects more restricted latitude regions.

• Electron flux observations are not always straight forward to use in atmospheric modeling.

=⇒ It is not clear how big the direct effect of electron precipitation is.
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In the present work

• We study the connection between precipitating electrons (measured in
the radiation belts by MEPED/POES) and mesospheric OH observed by
MLS/Aura.

• We look for

1) OH increases in high-precipitation cases, e.g. March 2005.

2) signatures of electron precipitation in OH during years 2004–2009.

• We ask:

1) is electron precipitation causing measurable changes in OH?

2) how often is OH affected by electron precipitation?

3) can we model OH and ozone changes caused by electrons?
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Mean nighttime OH, March 5–10, 2005
MLS/Aura, Altitudes 71 – 78 km, Units: cm−3
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Electron precipitation and OH in March 2005
Magnetic latitudes 55− 65oN
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Electron count rate vs. OH concentration
Daily averages, magnetic latitudes 55− 65oN
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High electron count rates correspond to high OH concentrations!
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Electron count rate vs. OH concentration
Daily averages, magnetic latitudes 55− 65oS
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Correlation r(OH,ECR) in 2004–2009
Magnetic latitudes 55− 65oN
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– Declining solar activity, declining correlation

– No stratospheric correlation, no effect by >3 MeV electrons
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Correlation r(OH,ECR) in 2004–2009 at 75 km
Magnetic latitudes 55− 65oN
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35% of months show electron impact in the mesosphere (r > 0.35)
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Describing the energy-flux spectrum of electrons

• Electron energies 50–2000 keV are considered, affecting altitudes 90–50 km.

• MEPED measures electron fluxes at energies >30, >100, and >300 keV.

• MEPED observations are used to fit an electron energy spectrum, the power-
law form of the spectrum is based on observations of the IDP/DEMETER
instrument, which has a much better energy resolution than MEPED.

• Note that recent ionospheric studies have indicated that flux correction
factors up to a factor of 10 may be needed for MEPED data (Hendry et
al., 2012; Clilverd et al., 2012)
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Sodankylä Ion and Neutral Chemistry (SIC)
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SIC: example of HOx production paths
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Modelling approach

• Four months with high electron fluxes were considered:

January 2005, March 2005, May 2005, and April 2006.

• Model input:

daily zonal mean electron fluxes calculated using data from three MEPED instruments.

• Model locations:

two latitude/longitude points, one in each hemisphere, at 60◦ of magnetic latitude.

• Model runs:

two runs, one with daily electron forcing (EEP), one with constant quiet-time electron

background (CTR).

– Using daily mean data improves the signal-to-noise ratio, and compensates differences

between MEPED and MLS data sampling.

– We are not comparing fine details here, but want to know if the model can produce

anything similar to the observations.
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Comparison of relative OH and ozone changes
Magnetic latitudes 59− 65o
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Comparison of OH altitude profiles
Magnetic latitudes 59− 65oN

OH concentration (cm−3)

• OH increases between 60 and 80 km, which is in agreement with our correlation results.

• At 70–80 km (E < 300 keV) there is no need for factor-of-10 flux corrections.

• SIC generally underestimates OH below 70 km, electron flux/spectrum needs adjustment?

• However, the differences are relatively small (log scale!) and there are other possible reasons.
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Comparison of ozone altitude profiles
Magnetic latitudes 59− 65oN

O3 mixing ratio (ppmv)

• Ozone decreases above 65 km.

• SIC and MLS are in reasonable agreement.

• Again, no need for substantial flux corrections above 70 km (E < 300 keV)
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Summary

• Energetic electron precipitation (EEP) is significantly affecting mesospheric odd hydrogen

at the magnetic latitudes connected to the outer radiation belt.

• In March 2005 and April 2006, EEP causes factor-of-two increases in daily average OH at

71–78 km altitude and can explain 56–87% of OH day-to-day variability.

• On a longer term, analysing data sets extending from 2004 to 2009 (65 months), we find

that 35% of the time there is a clear correlation between EEP and mesospheric OH.

• No electron signature is found in stratospheric OH. This indicates that >3 MeV electron

fluxes are relatively small.

• Comparisons between Sodankylä Ion and Neutral Chemistry model and MLS/Aura

observations indicate that EEP-caused ozone changes can be tens of percent at 70–80 km.

• Electron flux correction may be needed at energies > 300 keV, but we cannot make strong

conclusions based on the MLS data at altitudes below 70 km.
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