# Rapid events in the carbon-14 content of tree-rings

FUSA MIYAKE<sup>1</sup>, KIMIAKI MASUDA<sup>1</sup>, TOSHIO NAKAMURA<sup>2</sup>
<sup>1</sup> Solar-Terrestrial Environment Laboratory, Nagoya University
<sup>2</sup> Center for Chronological Research, Nagoya University

Space Climate, June 16, 2013

# Contents

- Motivation
- Measurements (AD600-1020)
- Rapid events
- Future project

Conclusion

The stump of Tree-A



#### Past CR intensity...<sup>14</sup>C measurement



#### Relation between <sup>14</sup>C & CR

Cosmic rays produce <sup>14</sup>C (Neutron capture reaction)

<sup>14</sup>C is oxidized to form
<sup>14</sup>CO<sub>2</sub> and taken by trees
during the carbon cycle

<sup>14</sup>C content in tree rings is retained and shows a record of the past CR intensity

#### Cosmic ray events

Cosmic high energy phenomenon

- $\rightarrow$  Cosmic ray intensity rapidly increases
- $\rightarrow$  It is possible tree-rings record such an event

However such events have not been found before

There are a lot of periods of time where there are no yearly <sup>14</sup>C content measurements

 $\Rightarrow$ It is possible that such events are hidden in these periods

### <sup>14</sup>C content of this 3000years

Search for Cosmic Ray events→IntCal decadal <sup>14</sup>C dataset



#### Sample Tree-A



### Sample Tree-B

- Japanese cedar tree different from Tree-A
- Supplied by prof. Kimura (Fukushima University)





### AD775 event



a) Variation of <sup>14</sup>C (1-2 year data)



AD775 event is global

### **Records of Supernova**

- Mainly recorded in China and Europe
- These are 7 SN records occurred in our galaxy

| Supernova           | Year [AD] | Max.<br>magnitude | Туре | SN remnant                     | Distance [ly] |
|---------------------|-----------|-------------------|------|--------------------------------|---------------|
| SN 185              | 185       | -8                |      | RCW 86                         | 3000          |
| SN 393              | 393       | -1                |      | RX J1713.7-3946 ?              | 3000          |
| SN 1006             | 1006      | -9                | la   |                                | 7000          |
| SN 1054             | 1054      | -6                | II?  | Crab Nebula                    | 6300          |
| SN 1181             | 1181      | 0                 | Ш    | 3C58                           | 10000         |
| SN 1572             | 1572      | -4                | la   | Tycho's Nova                   | 12000         |
| SN 1604             | 1604      | -2.5              | la   | Kepler's Star                  | 20000         |
| Carrington<br>flare | 1859      |                   |      |                                |               |
| 1460 event          | ~1460     |                   |      | Identified by <sup>10</sup> Be |               |

# SN1006, SN1054



# SN1572, SN1604





#### Carrington flare(SPE1859), SN1885



Much higher energy than recorded events

### Cause of these events?

Large SPE (Solar Proton Event)?

Maehara et al. 2012

One order of magnitude beyond SPE 1989 (Thomas et al. 2013) 25-50 times larger than SPE1956 (Usoskin et al. 2012, 2013)

 $\rightarrow$ Below the extinction level and a possible cause

Short GRB (gamma-ray burst)?

Hambaryan & Neuhäuser (2013)

**©NASA** 

Explain that at the time of the 2 events there were no SNRs and no historical record

 $\rightarrow$ However, observed rate of short GRB is very low

<sup>14</sup>C event rate is very important!









#### **Comparison with IntCal98**



### <sup>10</sup>Be data in Antarctic ice core



- Cosmogenic nuclide
- Dome Fuji in Antarctica
- Decadal data (Horiuchi et al. 2008)



<sup>10</sup>Be decadal data in Antarctic ice core

There are increases around AD775 & 993





Proportions of flux increase ( $^{14}C/^{10}Be$ ) of two events are consistent with each other  $\rightarrow$ Two events must have the same origin!

#### When did two events occur?



#### Cause of <sup>14</sup>C event

- Higher solar activity period (Two events are not in a grand solar minimum period)
- 1 event / 800 years



Solar activity is a more plausible cause!

Inconsistency between a short GRB rate and <sup>14</sup>C event rate



図1: (左)太陽型星のスーパーフレアの想像図(右)京都大学飛騨天文台の太陽磁場活動望遠鏡 (SMART)で撮影された2011年9月7日の太陽フレア(Ha+1.2Åの単色像)Maehara et al.2012

# <sup>10</sup>Be measurement (with 1-yr resolution)

#### Antarctica Dome F. decadal data



Are they really 1-yr increases?
Determine the absolute date of the core

#### Collaborate with Hirosaki Uni.



### For Further study

 Difference between both hemispheres (Antarctica and Greenland) ?



Years AD Usoskin & Kovaltsov 2012

 More <sup>10</sup>Be measurements in some cores will be necessary





## Conclusion

- We measured <sup>14</sup>C content from AD 600 to 1020
- We found two rapid increases in the <sup>14</sup>C content (AD775, AD993)
- IntCal and <sup>10</sup>Be decadal data, and European yearly <sup>14</sup>C data also show the rapid increases
- Considering the occurrence rate of <sup>14</sup>C events, the cause of <sup>14</sup>C events must be due to large Solar Proton Events



## We need old trees

- Do you have any old trees?
- Or do you know where any old trees can be found?
- If you have any information, please contact us.
- We will be sure to measure <sup>14</sup>C content for the past 10,000 year
- Let's work together!
- Contact email: fmiyake@stelab.nagoya-u.ac.jp







