

Ilya Usoskin

University of Oulu, Finland

Direct data: since 1950s

SPE: space era

Shea & Smart (1990, 2012), Reedy (2012): No events with F_{30} >10¹⁰ cm⁻² since 1956.

Cosmogenic radionuclides: last 11 millennia

Data series used

- IntCal09 Δ^{14} C global series: 11000 BC 1900 AD, 5-yr time resolution (Reimer et al. 2009).
- **SB93** Δ^{14} C global annual series: 1511 1900 AD (Stuiver & Braziunas 1993).
- Dye3 ¹⁰Be Greenland annual series: 1424–1985 AD (Beer et al. 1990).
- NGRIP ¹⁰Be Greenland annual series: 1389–1994 AD (Berggren et al. 2009).
- SP ¹⁰Be South Pole Antarctic series: 850–1950 AD, quasi-decadal (Raisbeck et al. 1990; Bard et al. 1997).
- *DF* ¹⁰Be Dome Fuji Antarctic series: 695–1880 AD, quasi-decadal (Horiuchi et al. 2008).
- GRIP ¹⁰Be Greenland series: 7380 BC–1640 AD, quasi-decadal (Yiou et al. 1997; Vonmoos et al. 2006).
- ¹⁴C (Miyake et al., 2012, 2013)

SPE scenaria

SPE56:

23-Feb-1956 – hard spectrum NM: 4000% at Leeds NM $F_{30} = 10^9 \text{ cm}^{-2}$ (Shea & Smart, 1990)

 $Q_{10Be} = 7.5^{*}10^{4} \text{ at/cm}^{2}$ (intermediate mixing) $Q_{14C} = 2.9^{*}10^{6} \text{ at/cm}^{2}$ (global)

SPE72:

04-Aug-1972 – soft spectrum NM: 10% at Oulu NM $F_{30} = 5*10^9 \text{ cm}^{-2.}$

 $Q_{10Be} = 1.1*10^4 \text{ at/cm}^2$ (intermediate mixing) $Q_{14C} = 3.1*10^5 \text{ at/cm}^2$ (global)

¹⁴C / ¹⁰Be \rightarrow F₂₀₀, not F₃₀, conversion is a matter of spectrum. Soft-spectrum event may be missing in the cosmogenic nuclide data. The same isotope signal requires 40X greater F₃₀ in SPE72 than in SPE56,

775 AD: model vs. data

 $\frac{\text{SEP} \rightarrow \text{production}}{\text{(Kovaltsov et al., 2012)}} Q_{14C}$

Q \rightarrow carbon cycle $\rightarrow \Delta^{14}$ C 5-box model (Damon & Peristykh, 2004)

Response for SPE56 is:

Peak – 0.2-0.35 ‰ (errors ~2 ‰), FWHM~20-30 yrs, rise time 0-10 yrs.

Fit of 45 SPE56 (F_{30} =4.5*10¹⁰ cm⁻²) \rightarrow

775 AD – other data

Candidates from annual series (600 yrs)

•	1460-1462:	NGRIP	F ₃₀ =	1.5*10 ¹⁰ cm ⁻²
		Dye3		1*10 ¹⁰
•	1505	Dye3		1.3*10 ¹⁰
•	1719	NGRIP		1*10 ¹⁰
•	1810	NGRIP		1*10 ¹⁰

* 4 events with F_{30} =1-1.5*10¹⁰ cm⁻² over 600 years * no events with F_{30} >2*10¹⁰ cm⁻² over 600 years

Thus: $p=0.0077(^{+0.0073}_{-0.0045})$ yr⁻¹ – 1/130 yr for F₃₀<2*10¹⁰ (NB: not 4/600=1/150 yr !)

 $p=0 - 0.0027 \text{ yr}^{-1} - \text{rarer than } 1/400 \text{ yr for } F_{30} > 2*10^{10}$ (median 1/850 yr⁻¹)

SPEs: 600 years of data

Candidates from rougher series

• 8910 BC	IntCal09	2.0*10 ¹⁰
•8155 BC	IntCal09	1.3*10 ¹⁰
•8085 BC	IntCal09	1.5*10 ¹⁰
•7930 BC	IntCal09	1.3*10 ¹⁰
•7570 BC	IntCal09	2.0*10 ¹⁰
•7455 BC	IntCal09	1.5*10 ¹⁰
•6940 BC	IntCal09	1.1*10 ¹⁰
•6585 BC	IntCal09	1.7*10 ¹⁰ Statistics for 11400 years:
•5835 BC	IntCal09	1.5*10 ¹⁰
•5165 BC	GRIP	$2.4^{*}10^{10}$
•4680 BC	IntCal09	1.6*10 ¹⁰ 20 events $F_{30} = (1-3)^{10} \text{ cm}^2$
•3260 BC	IntCal09	2.4*10 ¹⁰ no events with $E_{\infty} > 5*10^{10} \text{ cm}^{-2}$
[•] 2615 BC	IntCal09	1.2*10 ¹⁰
[•] 2225 BC	IntCal09	1.2*10 ¹⁰
•1485 BC	IntCal09	2.0*10 ¹⁰
9 5 AD	GRIP	2.6*10 ¹⁰
[•] 265 AD	IntCal09	2.0*10 ¹⁰
•780 AD	IntCal09/DF	2-5*10 ^{10 -10000} -8000 -6000 -4000 -2000 0 2000
•990 AD	M13	2.5*10 ¹⁰
•1455 AD	SP	7.0*10 ¹⁰ overestimate??

Events to look for in A¹⁴C

SPEs: all data

Subconclusions

- Four potential candidates with $F_{30}=(1 \div 1.5)^*10^{10}$ cm⁻² and no events with $F_{30}>2^*10^{10}$ cm⁻² identified since 1400 AD in the annually resolved ¹⁰Be data.
- For the Holocene, **20** SPEs with $F_{30}=(1\div3)^*10^{10}$ cm⁻² are found in the ¹⁴C and ¹⁰Be data and clearly no event with $F_{30}>5^*10^{10}$ cm⁻².
- On average, extreme SPEs contribute about 10% to the total SEP flux.
- Practical limits are: $F_{30} \approx 1$, $2 \neq 3$, and 5^*10^{10} cm⁻² for the occurrence probability $\approx 10^{-2}$, 10^{-3} and 10^{-4} year⁻¹, respectively.

BUT: uncertainty of conversion $F_{200} \rightarrow F_{30}$

Cosmogenic radionuclides in lunar rocks: 1 Myr

Lunar/meteoritic samples

¹⁴C activity in a lunar sample 68815 (Jull et al., 1998).

Lunar rock data

Table 1. Assessments of the parameters of OPDF from different cosmogenic radionuclide data in lunar rocks. Columns correspond to the nuclide, reference to the original data, the measured mean annual fluence F^* (10⁹ protons/cm²/yr), and the corresponding best-fit parameters α and β (10⁻⁹ cm² yr) with the 90% confidence intervals (see text).

#	Nuclide	Reference	F^*	α	β
1	^{14}C	(Jull et al., 1998)	1.33	2.64 ± 0.21	0.328 ± 0.037
2	^{41}Ca	(Fink et al., 1998)	1.77	1.67 ± 0.03	0.134 ± 0.002
3	⁸¹ Kr	(Reedy, 1999)	1.51	2.01 ± 0.02	0.202 ± 0.003
4	³⁶ Cl	(Nishiizumi et al., 2009)	1.45	2.16 ± 0.02	0.232 ± 0.003
5	²⁶ Al	(Kohl et al., 1978)	0.79	N/A	N/A
6	²⁶ Al	(Grismore et al., 2001)	1.74	1.69 ± 0.01	0.137 ± 0.001
7	$^{10}{ m Be}/^{26}{ m Al}$	(Nishiizumi et al., 1988)	1.10	6.93 ± 0.14	1.19 ± 0.03
8	$^{10}{ m Be}/^{26}{ m Al}$	(Michel, Leya, and	0.76	N/A	N/A
		Borges, 1996)			
9	$^{10}Be/^{26}Al$	(Fink et al., 1998)	1.01	N/A	N/A
10	$^{10}Be/^{26}Al$	(Nishiizumi et al., 2009)	0.76	N/A	N/A
11	^{53}Mn	(Kohl et al., 1978)	0.79	N/A	N/A

Fluence is averaged over the isotope's life time (production-vs-decay balance) – no time resolution.

Earlier estimate

assumption was made that all of that nuclide was made by one huge SPE at one half-life of that radionuclide ago. These four limits define a line that drops

Inconsistency: an event in ¹⁴C (6 kyr) _must_ leave record in ⁴¹Ca (~100 kyr), etc.

Events to look for in A¹⁴C

Some formalism

$$\langle F \rangle = \int_0^{F_0} F \cdot p(F) \cdot dF + \int_{F_0}^{\infty} F \cdot p(F) \cdot dF = \langle F_1 \rangle + \langle F_2 \rangle,$$

Low-fluence events High-fluence events

For 1955-2007, <F>=1.1*10⁹ /cm²/yr

 $P_0=0.1 \text{ yr}^{-1}$, $F_0=0.52*10^9 / \text{cm}^2/\text{yr} \sim 1/2 < \text{F} > 10^9 / \text{cm}^2/\text{yr} \sim 1/2 < \text{F} > 10^9 / \text{cm}^2/\text{yr} \sim 1/2 < \text{F} > 10^9 / \text{cm}^2/\text{yr}$

p=dP/dF

 $P = P_o^* (F/F_o)^{-\alpha} \rightarrow \text{power law}$ $P = P_o^* exp(\beta(F_o - F)) \rightarrow \text{exponential}$

Exponential OPDF

Final result

Summary on lunar rock-based SEP assessments

- Earlier estimates based on unrealistic assumptions (all F₃₀ caused by a single event occurred at half-life time ago) → too high fluxes.
- A more realistic assumption → consistent with other independent data (terrestrial cosmogenic isotopes and "direct" observations).
- A strong roll-off is proposed for F₃₀>10⁹ protons/cm²/yr on average.
- The OP of a F_{30} >10¹¹ p/cm²/yr event is <10⁻⁶ yr⁻¹.

Final result

SPE in ¹⁴C

 $\frac{\text{SEP} \rightarrow \text{production}}{\text{(Kovaltsov et al., 2012)}} Q_{14C}$

Q \rightarrow carbon cycle $\rightarrow \Delta^{14}$ C 5-box model (Damon & Peristykh, 2004)

Response for SPE56 is:

Peak – 0.2-0.35 ‰ (errors ~2 ‰), FWHM~20-30 yrs, rise time 0-10 yrs.

Fit of 24 SPE56 ($F_{30}=2.4*10^{10} \text{ cm}^{-2}$) \rightarrow

Lunar rocks

Extreme SPEs should have hard spectra!

Lunar rock data

Table 1. Assessments of the parameters of OPDF from different cosmogenic radionuclide data in lunar rocks. Columns correspond to the nuclide, reference to the original data, the measured mean annual fluence F^* (10⁹ protons/cm²/yr), and the corresponding best-fit parameters α and β (10⁻⁹ cm² yr) with the 90% confidence intervals (see text).

#	Nuclide	Reference	F^*	α	β
1	^{14}C	(Jull et al., 1998)	1.33	2.64 ± 0.21	0.328 ± 0.037
2	^{41}Ca	(Fink et al., 1998)	1.77	1.67 ± 0.03	0.134 ± 0.002
3	⁸¹ Kr	(Reedy, 1999)	1.51	2.01 ± 0.02	0.202 ± 0.003
4	³⁶ Cl	(Nishiizumi et al., 2009)	1.45	2.16 ± 0.02	0.232 ± 0.003
5	²⁶ Al	(Kohl et al., 1978)	0.79	N/A	N/A
6	²⁶ Al	(Grismore et al., 2001)	1.74	1.69 ± 0.01	0.137 ± 0.001
7	$^{10}{ m Be}/^{26}{ m Al}$	(Nishiizumi et al., 1988)	1.10	6.93 ± 0.14	1.19 ± 0.03
8	$^{10}{ m Be}/^{26}{ m Al}$	(Michel, Leya, and	0.76	N/A	N/A
		Borges, 1996)			
9	$^{10}Be/^{26}Al$	(Fink et al., 1998)	1.01	N/A	N/A
10	$^{10}{ m Be}/^{26}{ m Al}$	(Nishiizumi et al., 2009)	0.76	N/A	N/A
11	^{53}Mn	(Kohl et al., 1978)	0.79	N/A	N/A

Power-law OPDF

$$\langle F \rangle = \int_0^{F_0} F \cdot p(F) \cdot dF + \int_{F_0}^{\infty} F \cdot p(F) \cdot dF = \langle F_1 \rangle + \langle F_2 \rangle,$$

For 1955-2007, <F>=1.1*10⁹ /cm²/yr

$$P_o = 0.1 \text{ yr}^{-1}$$
, $F_o = 0.52 \times 10^9 \text{ /cm}^2/\text{yr}$

p=dP/dF

 $P=Po^*(F/Fo)^{-\alpha} \rightarrow \text{power law}$ $P=Po^*exp(\beta(Fo-F)) \rightarrow \text{exponential}$

PDF vs. F2

Calibration curve

Lunar rock data

Such a situation is impossible!

Even switching SEP off does not help \rightarrow neglect long-living isotopes.

Scheme

Lunar rock vs. Δ¹⁴C

Lunar rock-based limit: Half of the fluence – by one SPE **<u>BUT</u>**:

¹⁴C-LR based estimate f-42 cm⁻²s⁻¹ (Jull et al.), for non-extreme SPEs f-35 cm⁻²s⁻¹ => for extreme SPE f-7 cm⁻²s⁻¹ => total F₃₀ fluence ~2*10¹² cm⁻² over Holocene => max ~10¹² cm⁻².

Lunar rocks: A few $F_{30}=10^{13}$ events over Holocene – must be seen in Δ^{14} C series.

Specific event of ca. 1460 AD

NGRIP/Dye3 signal (F_{30} =(1-1.5)*10¹⁰ cm⁻²) is consitent with DF and SB93 (no signal),

SP-implied signal ($F_{30}=7*10^{10}$ cm⁻²) – too high

775 AD: model vs. data

780 AD – other data

Carrington event 1859

Carrington event 1859:

 $F_{30}=1.8*10^{10} \text{ cm}^{-2} (\text{McCracken et al., 2001}).$ +
GCR (from Alanko-Huotari et al., 2007)
+
¹⁰Be production model (Kovaltsov & Usoskin, 2010)
->
modelled ¹⁰Be response.

The expected peak is ~10 σ too high => Should be <5*10⁹ cm⁻².

Potential signature in annual ¹⁰Be

Cross-check performed

