* ***** ****

Revisiting the long-term calibration of the International Sunspot Number

Frédéric Clette, Laurence Wauters & Laure Lefèvre SILSO: World Data Center – Sunspot Index *Royal Observatory of Belgium*

- A quick chronology of the sunspot number (SSN) construction
- Identified biases in the sunspot series (SSN and group number)
- Recent anomalous trends (cycle 23-24)
- Interpretation: what do the present issues tell us about the early sunspot number ?
- Conclusions and prospects

R. Wolf: invention of the sunspot index [1850]:
 W= 10 Ng + Ns

The 2 standard instruments:

- Standard « Fraunhofer » refractor (fixed, roof of Zürich Observatory)
 D= 83mm, F= 1320mm Mag= 64x
- Small travel refractor (portable, used when travelling):
 D= 43mm, F= 550mm, Mag= 29x
- Still in use now (Thomas K. Friedli, Rudolf Wolf Society, Zürich)

H.U. Keller and T. K. Friedli Mid-1980's

R. Wolf in 1855 (1849-1893)

Space Climate 5, Oulu

Inclusion of past sunspot observers:

- Samuel Heinrich Schwabe [1789-1875]:
 - Sunspot observations 1826 1867

S. H. Schawbe

• 1857: adding Staudacher (1749-1799)

1861: magnetic needle corrections Staudae

Staudacher data x 2

Record of these adjustments as seen in the lower end of the histogram of SSN values vs time

Space Climate 5, Oulu

 1902: Wolfer correction cycle 5 (1799-1810) x 0.58

- Wolf-Wolfer transition [1877 1893] New counting method:
 - All small spots included in count
 - Multiple umbrae in common penumbra counted as separate spots
 - 16 years of parallel Wolf-Wolfer counts

$R_z = 0.6 W_{zU}$

Alfred Wolfer (1877-1925)

- Zürich period:
 3 directors
- Sunspot weighting:
 - Starting date uncertain:
 1930's (W. Brunner) or
 ~1944 (M. Waldmeier)

M. Waldmeier [1944 - 1980]

- Second base station [1957]: Specola Solare Locarno (Ticino, SW)
 - Observer: S. Cortesi (still observing today!)
 - Trained to the Zürich method

S. Cortesi and M. Waldmeier circa 1955

The Zürich SSN computation

- SSN = Wolf number of the Zürich station
- Daily gaps filled with average of auxiliary stations (10 to 40 stations)
- Scaling: yearly average k personal coefficients

- 1981: transfer of the WDC Sunspot to Brussels (SIDC)
 - New pilot station: Specola Solare Ticinese, Locarno (Main observers: S. Cortesi, M. Cagnotti)
 - New global statistical determination of SSN using the full network
 - Extension of the worldwide observing network: from ~30 to ~80 stations

The Brussels International Sunspot Index R_i (1981-now)

SSN calculation method

• Scaling: average monthly k relative to pilot station:

 $k_s = \sum_d W_{LO}(d) / W_s(d)$

- Daily SSN: statistics over whole network: $R_i = \sum_s k_s \cdot W_s$
- Elimination of anomalous daily Locarno values

W_{LO}/R_i monthly rms variation: ~3 %

On timescales > 1 month, R_i is largely tracking the pilot station W_{LO}

Space Climate 5, Oulu

SSN accuracy vs other indices

- Current rms dispersion of raw individual W_svalues:
 - Daily: 8%
 - Monthly: 1.5%
- Photospheric indices:
 - R_G, R_A, R_{Boulder}, Area, Mx, F_{10.7cm}
 - High linear correlations (R>95%):
- \Rightarrow Quantitative index:
 - magnetic flux emergence
- Chromospheric and mixed indices:
 - TSI, CaII-K, MgII
 - Good correlations:
 - Non-linear relation
 - Time lags
 - Different physics !

D. Hathaway, SSN workshop 2012

STARA catalog; F. Watson, 2012

The 1885 drift: R_z versus R_G

- Main alternate index: group sunspot number R_G (Hoyt & Schatten 1998)
- R_G 40% below R_Z before 1880 !
- Progressive ramp: 1875 1910 (~35 years)

Cliver, Clette & Svalgaard 2013

The 1885 drift diagnostics: reference sunspot series

- Progressive increase of the RGO sunspot number and group count relative to all parallel stations
 - Reference: multiple long-duration observers spanning the 1874 – 1910 interval (Svalgaard 2012, Vaquero 2013)
 - Ratio increases by ~40% over 1875 - 1893 (J. Vaquero 2012)

- Indications of changes in the early RGO data set (*Willis et al, 2013*):
 - Photographic plate type
 - Measuring method

15/06//2013

the R_z-R_G discrepancy is mostly due to an R_G underestimate

Space Climate 5, Oulu

The Waldmeier jump

- Rather sharp jump around 1945
- Ratio R_G/R_Z: decrease by ~15-20%

Cliver, Clette & Svalgaard 2013

The Waldmeier jump diagnostics

- Jump in SSN confirmed by different • analyses:
 - Comparison with long-duration stations (e.g. Madrid) (Vaquero 2012)
 - Ratio SSN / sunspot area (RGO) (Svalgaard 2012)
 - Bayesian separation of group and spot contributions in SSN: (Dudok de Wit 2012)
 - 2 break points in R₇ R₆ relative statistical properties
- No indications of changes in the RGO data around 1940-50 Change in the SSN scaling

Svalgaard, 2012

1870

The Waldmeier jump: probable cause

Sunspot weighting:

- Large spots are counted >1 (up to 5)
- Uncertain date of introduction:
 - Brunner in 1932 (Cagnotti, 2012)
 - Waldmeier, director from 1940 (Waldmeier, 1968, Astr. Mitt. N°285)
- Locarno trained to the method (1955): still in use !
- Blind test (2003 2011): double counting by M. Cagnotti

 \implies Ratio W_w / W_u = ~1.16

20

0

0

20

40

60

80

100

Svalagard, 2011

140

R_{leif} R_{Marco}

120

Anomalies in the long cycle 23

Long cycle 23-24 minimum: Were there precursor signs during cycle 23?

- Break in the relation between SSN and other solar activity indices
- The F_{10.7} example (Svalgaard & Hudson 2010, Lukianova & Mursula 2011, Lefèvre & Clette 2011):
 - Divergence from a constant ratio starting in 2000
 - SSN ~15% lower than the $F_{10.7}$ proxy(Johnson 2010)
 - Apparent return to normal ratio in cycle 24

Cycle 23 and vanishing spots: recent drifts in R_i

- Global analysis of raw sunspot counts from all 267 stations
 - \sim 80 valid stations with duration > 15 years
 - (> 200,000 observations)
 - Multi-station average of the ratio W_s/R_i (~ W_s/W_{LO})
- Consistent trend for different « mixes » of stations (according to duration, rms dispersion)
- « S » pattern drift attributable to the Locarno pilot station:
 - Peak-peak amplitude (including minima): 30%
 - Effective impact on SSN: 20%

Recent drifts in R_i (1981-2013)

Adding raw records from Zürich: 20 stations, 1955-1980

- No trend before 1981 (Pilot station: Zürich)
- Drifts start with the transition to Locarno

- All raw observations available in the SILSO database
- Good alternate pilot stations can be identified
- ➡ The R_i drift can be fully corrected !

15/06//2013

Space Climate 5, Oulu

(recomputation planned in 2013)

Recent drifts in R_i : consequences for cycle 23 anomalies

• Discrepancies with other indices $(R_A, F_{10,7})$ are partly eliminated

Space Climate 5, Oulu

15/06//2013

Cycle 23 and vanishing sunspots

Same drift of F_{10.7} relative to SOON sunspot areas (Hathaway 2010)

Hathaway 2010, 2013

Problem in F_{10.7}? in SSN? Or true physical change in the Sun?

Cycle 23 and vanishing sunspots: small-spot deficit

- Exploitation of detailed sunspot catalogs (DPD, Debrecen; NOAA/SOON)
- Scale dependant small-spot deficit in cycle 23:
 - Deficit of small groups (A & B: spots without penumbra):
 - Ratio cycle 23 / cycle 22 ~ 50% (Lefèvre & Clette 2011 2012, Kilcik et al. 2011)
 - Deficit of small spots also in larger groups:
 - Ratio cycle 23 / cycle 22 < 75% (Lefèvre & Clette 2012)
- Starts in 1998
- Significant only after 2000 (first peak in cycle 23 maximum)

Cycle 23 and vanishing spots: declining field strength

- Livingston-Penn effect (Livingston & Penn 2009, 2012; Penn & Livingston 2006,):
 - Average core magnetic field in umbra (FeI line: 1565 nm)
 - Steady decline since 2000: Magnetic field: -40 G/year
- Existence of a lower threshold: 1500 G
- Decline of the small-sunpot formation fraction
- BISON helioseismic sounding 1978- 2012 (Basu et al. 2013):
 - Solar-cycle induced modulation of p-mode frequencies in the near-surface layers
- Top layers (high-frequency modes): discrepancy starting in 1998
- Deeper layer (r < 0.997 r_o) (low frequency modes):

deviation during entire cycle 23

Thinning of the subsurface magnetic field layer (< 20000 km)</p>

(c) 1860 < v ≤ 2400 µHz

2010

2005

-0.20

0.00

-0.05

-0.10

-0.15

1990

1995

2000

Year

ص -0.25

Cycle 23 and vanishing spots: variable SSN / R_G ratio Any corresponding trend in the sunspot/group ratio ?

- Reconstruction and extension of the Group Number R_G up to 2012 (WDC – Sunspot database):
 - Both indices calculated from the same data set
- Good overall match with R_G from Hoyt & Schatten:
 - Ratio near 1.0 and constant

except for

- Jump around 1975 (transition from RGO to SOON data)
- R_G scale increased by ~10% after 1975

Wauters & Clette, SSN Workshop 2013

Cycle 23 and vanishing spots : variable SSN / R_G ratio

- Changing R_i/R_G ratio:
 - Stable over cycles 19 to 22
 - Decline in cycle
 23 and early part
 of cycle 24
- Decrease of the average number of spots per group by ~30%

Cycle	Ns/Ng	North	South	R_i/R_G	North	South
19	11.3			12.8		
20	10.3			12.2		
21	10.4			12.2		
22	11.9	12.5	10.7	13.2	13.5	12.5
23	9.3	9.5	8.7	11.6	11.5	11.9
24	8.5	8.7	6.4	11.0	11.2	10.3

Wauters & Clette, SSN Workshop 2013

15/06//2013

Space Climate 5, Oulu

Cycle 23 and vanishing sunspots: spots per group

- Same trend deduced for different stations and data sets
- Apparent secular variations of the number of spots per group:
 - Increase for stronger cycles (Tlatov 2013, Nagovitsyn et al. 2012)
 - Caveat: Ratio of distinct series based on different sets of raw observations.
- SSN and group number are two distinct physical quantities.

> Varying R_z-R_g relation = physical information

Vanishing spots: theoretical implications

- Dynamo models: Existence of two dynamo components, deep and shallow ?
 - Babcock-Leighton near-surface flux diffusion mechanism (Muñoz-Jaramillo et al. 2010, 2011)
 - Role of a shear layer just below the surface (A. Brandeburg 2005)
 - Near-surface magnetic flux aggregation mechanism (K. Schatten 2009, Rempel, et al 2009)
- TSI and spectral irradiance reconstruction:
 - Lower sunspot blocking (magnetic fields falling below 1500G threshold)

Higher excess in network and plages (near-UV, microwaves, solar wind ?)

 Reduction of the effective range of irradiance variations in low activity ? (cf. existence of base level in solar flux, Schrijver et al. 2011)

Future prospects: fully corrected SSN series

- SSN workshops: full revision and validation of the SSN series ٠
- 3 past workshops: Sac. Peak Sept. 2011, Brussels May 2012, NSO-Tucson Jan. 2013 ٠
- 2 future workshops: AIP Potsdam Oct 2013, USA? Spring 2014 •
- Output: ٠
 - Special journal issue gathering all results (~ 40 contributors, early 2014) _
 - Release of a fully revised SSN series (WDC SILSO, Brussels)

Future prospects: fully corrected SSN series

- SSN workshops: full revision and validation of the SSN series
- 3 past workshops: Sac. Peak Sept. 2011, Brussels May 2012, NSO-Tucson Jan. 2013
- 2 future workshops: AIP Potsdam Oct 2013, USA? Spring 2014
- Output:
 - Special journal issue gathering all results (~ 40 contributors, early 2014)
 - Release of a fully revised SSN series (WDC SILSO, Brussels)

- Reduction of the upward trend in solar activity since the Maunder Minimum
- Closer agreement between R_i and modern solar indices after 1980 (except cycle 23?)

Conclusions:

- Revival of the SSN and sunspot science
- Biases and trends now largely identified:
 - Fairly recent (late 19th century now): many original data accessible
 - Recent errors are propagated backwards over the entire series.
- The ratio between the sunspot number R_i and group number R_g is intrinsically variable (e.g. vanishing small-spots)
 - Manifestation of small and large-scale process in the solar dynamo
- Corrected SSN > small secular rise from last Maunder Minimum to 20th century
 - Limited range of secular trends in amplitudes of cycle-induced modulations
 - Variation in the clustering of high or low cycles (recurrence)

Epochal step: first end-to-end revision of SSN since 1849 ! Release in 2014

Sunspots remain the only long-term direct information on solar activity.

WDC – SILSO: international sunspot number data http://sidc.be ("Sunspot" tab)

New dedicated Web site coming up soon (mid-2013)

WDC – SILSO Sunspot Index and Long-term Solar Observations

SSN Workshop wiki (incl. all PDF presentations)

http://ssnworkshop.wikia.com/wiki/Home