

The interplanetary magnetic field (IMF) influence on mid-latitude surface atmospheric pressure

Mai Mai Lam, Gareth Chisham & Mervyn P. Freeman

British Antarctic Survey NATURAL ENVIRONMENT RESEARCH COUNCIL

Space Climate 5, Oulu, Finland, 15 - 19 June 2013

Outline

Background

- Why are we interested?
- Global atmospheric electric circuit (GEC)
- Vertical fair-weather current in GEC can affect cloud dynamics
- Burns et al, 2008: polar meteorological response to IMF B_v
- Our project
 - Extend to global study
 - Confirm polar results
 - Previously unrecognised mid-latitude correlation Rossby waves
 - Two stage mechanism (i) polar, (ii) mid-latitude
- Implications and summary
 - Global connection via non-linearity

Anthropogenic and natural forcing of the climate for the year 2000, relative to 1750

Global mean radiative forcing (Wm-2)

Anthropogenic and natural forcing of the climate for the year 2000, relative to 1750

Global mean radiative forcing (Wm-2)

Global electric circuit in Earth's atmosphere

- Global thunderstorms (~1000 at any one time) maintain vertical potential difference of V_i ~ 250 kV between ground and ionosphere
- V_i drives horizontal currents along highly-conducting regions: surface of Earth and ionosphere.
- Closed by ground-thunderstorm, thunderstorm-ionosphere currents, and by ionosphere-ground global fair-weather currents J_Z

Global electric circuit in Earth's atmosphere

Carnegie curve for any fairweather location on Earth

Harrison, 2013

J_z can affect layer cloud microphysics

- Low level clouds form when rising moist air condenses on submicron atmospheric particles
- Droplet growth occurs by water vapour diffusion and collisions with other droplets
- Current J_z causes droplet electrification at lower edge of cloud
- Can affect droplet formation, droplet-particle and droplet-droplet collisions and coalescence
- Affects cloud lifetime, precipitation, radiative balance, dynamics of atmosphere
- Any processes that modulates *Vi* or σ , varies $J_z = \sigma E(Vi)$

Layer cloud measurements by Harrison & Ambaum

 Layer (stratus/stratified) clouds found globally (29%)

Cloud base height (Sodankylä)

Carnegie curve

Using laser cloud base recorder Vaisala CT25K ceilometer 2006-2011 polar winter

hour (UT)

Harrison and Ambaum, 2013

Cloud base height variation similar to Carnegie curve

- Layer clouds found globally (29%)
- Polar-winter: cloud base height correlates with fair-weather potential gradient (Carnegie curve) r = 0.8

Harrison and Ambaum, 2013

Dependence of cloud base height on PG similar at poles

Direct coupling between GEC and layer cloud base height

- Layer (stratus) clouds found globally (29%)
- Polar-winter: cloud base height correlates with fair-weather potential gradient (Carnegie curve) r = 0.8
- Carnegie curve \Rightarrow $\Delta h_{CB} = 100 \text{ m}; \Delta t_{CB} = 1 \text{ K}$
- Direct coupling ($\tau < 1h$) between global electric circuit current J_Z and layer cloud properties

Harrison and Ambaum, 2013

What can change J_z ?

Day-to-day meteorological correlations with J_z - papers

Relativistic electron flux changes

Wilcox et al. 1973; Hines and Halevy 1977; Larsen and Kelly 1977; Tinsley et al. 1994; Kirkland et al. 1996; Kniveton and Tinsley 2004; Roldugin and Tinsley 2004; Misumi 1983

Solar proton events

Schuurmans et al. 1965; 1969; Veretenenko et al. 1999; 2000; 2004; 2005

Cosmic ray Forbush decreases

Roberts and Olsen 1973, Padgoankar and Arora 1981; Tinsley et al. 1989; Tinsley and Deen 1991; Pudovkin and Veretenenko 1995; Todd and Kniveton 2001; Egorova et al. 2000

Solar-wind variations in V_i (and hence J_z)

• Magnetic reconnection \Rightarrow dawn-dusk potential in magnetosphere, $V_{sw} \sim 30 - 150$ kV: maps to high-latitude ionosphere

•
$$V_{sw} = -u_{sw} \times B$$
 depends on IMF $B = (B_x, B_y, B_z)$

2D ionospheric electric potential

Using model from 1998 - 2002 SuperDARN radar data

V (kV)

ΔV : difference between By > 0 and By < 0 potential

Might expect any direct effect on atmosphere via J_7 to:

- maximise at high latitudes
- vary with hemisphere
- vary with B_{v}

Geomagnetic co-ordinates

5 < |**B**| < 10 nT

Surface pressure vs IMF B_v

- Polar meteorological response to IMF By well established (Mansurov et al, 1974)
- Burns et al, 2008
- Fluctuations in surface pressure Δp vary with IMF B_y (1 2 hPa per 8 nT)

• Sign of $\Delta p: B_v$ opposite in N and S

 Δp - difference between daily value of surface pressure and 30-day running mean

Linear regression of Δp with IMF B_y

Burns et al. 2008

Same change in pressure with internal and external p.d.

External: Weimer 2001 to estimate ionosphere-earth p.d. from solar wind data Internal: vertical electric field measurements at Vostok

Burns et al. 2008

Evidence for direct action of Vi on surface pressure (i)

- Sign of $\Delta p: B_{\gamma}$ depends on hemisphere
- Slopes of Δp : V same for external and internal p.d
- t~0 time lags not inconsistent with mechanism involving global atmospheric electric circuit
- Evidence of direct action of ionospheric potential on cloud base height

Quantifying the effect of the upper atmospheric electric potential on lower atmospheric temperature and pressure

- Correlate surface pressure with ionospheric electric potential itself
 15 years SuperDARN data, 20 radars
- Use reanalysis data for p and T 1948 \rightarrow 6h
 - high resolution in latitude, longitude, altitude
- Correlation does not prove causal link
 - test specific mechanisms using **spatial** and time lag information
- Investigate role of B_z
 - Burns et al. 2007 used Vostok; low variation with V_{sw}

Global study of surface pressure - method

- Extend polar study of Burns et al. (2008) to global, zero-lag study
- Use 12 UT NCEP NCAR reanalysis surface pressure $p(\lambda, \phi, t)$ with seasonal cycle removed [λ latitude; ϕ longitude]
- Daily averages of IMF B_y calculated from hourly NSSDC OMNIWeb data 1999 2002

 $\bar{p}_+(\lambda,\phi)$: mean p for all days when $B_y \ge 3 \text{ nT}$ $\bar{p}_-(\lambda,\phi)$: mean p for all days when $B_y \le -3 \text{ nT}$ $\bar{p}_{all}(\lambda,\phi)$: mean p for all days

$$\bar{p}_{z+}(\lambda)$$
: zonal mean of $p_{+}(\lambda, \phi)$
 $\bar{p}_{z-}(\lambda)$: zonal mean of $p_{-}(\lambda, \phi)$
 $\bar{p}_{z}(\lambda)$: zonal mean of $p_{all}(\lambda, \phi)$

Mean zonal surface pressure oppositely ordered by IMF B_v in polar north and polar south

(a) Zonal mean pressure for IMF By $\ge 3 \text{ nT}$ Zonal mean pressure for IMF By $\le -3 \text{ nT}$

Error bars are 'error in the mean'

Mean zonal surface pressure oppositely ordered by IMF B_v in polar north and polar south

(a) Zonal mean pressure for IMF By ≥ 3 nT

Zonal mean pressure for IMF By \leq - 3 nT

Error bars are 'error in the mean'

(b) The difference between the blue and red curves

 $\Delta ar{p}_{zO}(\lambda) = ar{p}_{z+}(\lambda) - ar{p}_{z-}(\lambda)$

Mean zonal surface pressure oppositely ordered by **IMF B**_v in polar north and polar south

(a) Zonal mean pressure for IMF By \geq 3 nT Zonal mean pressure for

Error bars are 'error in the mean'

(b) The difference between the blue and red curves

 $\Delta ar{p}_{zO}(\lambda) = ar{p}_{z+}(\lambda) - ar{p}_{z-}(\lambda)$

(c) Significance of difference between data that make up blue and red curves in panel (a) using Wilcoxon Rank-Sum test

Surface pressure ordered by IMF B_y: Arctic and Antarctica

$$\Delta ar{p}_O(\lambda,\phi) = ar{p}_+(\lambda,\phi) - ar{p}_-(\lambda,\phi)$$

Surface pressure ordered by IMF B_v: Arctic and Antarctica

 $\Delta ar{p}_O(\lambda,\phi) = ar{p}_+(\lambda,\phi) - ar{p}_-(\lambda,\phi)$

Polar $\Delta \bar{p}_O$ resembles ΔV - supports GEC mechanism (i)

2D surface pressure is ordered by IMF B_v at high latitudes

$$\Delta ar{p}_O(\lambda,\phi) = ar{p}_+(\lambda,\phi) - ar{p}_-(\lambda,\phi)$$

• Size and sign of $\Delta \bar{p}_O(\lambda, \phi)$ at poles similar to Burns et al. study

Orange circles at 30° and 70°

2D surface pressure ordered by IMF B_y resembles Rossby wavefield at mid latitudes

 $\Delta \bar{p}_O(\lambda,\phi)$

Rossby waves

Atmospheric Rossby waves

- Satellite view of atmospheric circulation centred at the South Pole
- Shows characteristic Rossby (or planetary) quasi-stationary waves; Usually 4 - 6 waves at mid-latitudes
- The 2D surface pressure ordered by IMF By (previous slide) resembles this Rossby wave field

Significance (Wilcoxon + field testing) high, except equatorial region

$$\Delta ar{p}_O(\lambda,\phi) = ar{p}_+(\lambda,\phi) - ar{p}_-(\lambda,\phi)$$

Table 1. Field significances for WRS test between \bar{p}_+ and \bar{p}_-

10	Region	Latitude range (°)	Field significance (%, 2 s.f.)
	Arctic	70.0 N–90.0 N	1.9
	Mid latitude (north)	30.0 N–67.5 N	2.1
	Equatorial	27.5 S–27.5 N	23 <
	Mid latitude (south)	$30.0 \text{ S}{-}67.5 \text{ S}$	0.4
	Antarctica	$70.0 \text{ S}{-}90.0 \text{ S}$	0.3
1	Globe	90.0 S–90.0 N	2.0

0.1

2D surface pressure is ordered by IMF B_v at mid latitudes

$$\Delta ar{p}_O(\lambda,\phi) = ar{p}_+(\lambda,\phi) - ar{p}_-(\lambda,\phi)$$

- Size and sign of $\Delta \bar{p}_O(\lambda, \phi)$ at poles similar to Burns et al. study
- Size of $\Delta \bar{p}_O(\lambda, \phi)$ at mid latitudes similar to:
 - that at poles
 - effect comparable to initial uncertainties in zonal wind in ensemble numerical weather predictions
 - appearance of quasi-stationary Rossby waves

Orange circles at 30° and 70°

2-stage mechanism

$\Delta ar{p}_O(\lambda,\phi)$

- i. Change in polar surface pressure involving global atmospheric electric circuit
- ii. Resulting change in mid-latitude surface pressure via conventional meteorology

Mechanism stage (ii): 2D quasi-stationary Rossby waves

- Coriolis force varies linearly in co-latitude $\boldsymbol{\theta}$
- Stationary solutions for wind in longitudinal and latitudinal directions
- Integer number of azimuthal planetary waves, m
- Geostrophic approximation horizontal motion balanced by pressure force

Wavelength in latitudinal direction:

$$L_{\theta} = \frac{2\pi R \sin \theta}{[(4\omega^2 R^2 \rho \cos \theta \sin^3 \theta)/(\mathrm{d}\bar{p}/\mathrm{d}\theta) - m^2]^{1/2}}$$

depends on meridional gradient of zonally-averaged pressure, which changes with IMF B_{ν}

Accounts for Rossby-wave-like form of $\Delta ar{p}_O(\lambda,\phi)$

Implications

- Rossby wave field key in determining trajectories of storm tracks
- Configuration of North Atlantic jet stream particularly susceptible to changes in forcing...
- ... & location/timing of blocking events? (\Rightarrow periods low/high pressure)
- Upper-level Rossby wavebreaking \Rightarrow low-frequency variability of NAO

- NAO key to climate variability over Atlantic-European sector
- Eurasian winter $T \Leftrightarrow$ solar variability, and for 'Wilcox' effect.
- Importance of nonlinear dynamics

Summary

- Changes in IMF B_y correlate to changes in surface pressure above 30°; For zonal average, largest effect near poles
- Mid-latitude effect: difference in surface pressure for high positive and negative IMF $B_{\rm v}$ resembles Rossby wave field
- 2 stage mechanism (i) polar, (ii) mid-latitude

 (i) Direct action of ionospheric potential on cloud dynamics via GEC
 (ii) associated changes to atmospheric pressure modify
 2D quasi-stationary Rossby waves via zonal wind
- Small, localised solar influence on upper atmosphere may influence populated regions (European climate, breakup Arctic sea ice...)

Global connection via non-linearity

Acknowledgments:

- NCEP Reanalysis data provided by NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from http://www.esrl.noaa.gov/psd/
- OMNI data obtained from GSFC/SPDF OMNIWeb interface <u>http://omniweb.gsfc.nasa.gov</u>
- Software to produce plots of ionospheric potential written by Ellen Pettigrew

Regression coefficient between pressure and IMF B_y as function of time lag

