Implicit Large Eddy (ILES) Global Simulations of Solar Convection and Dynamo Action

Dário Passos

GRPS - Groupe de Recherche en Physique Solaire Physics Department Université de Montreal Canada

CENTRA - Multidisciplinary Centre of Astrophysics Physics Department Instituto Superior Técnico Portugal

Physics Department University of Évora Portugal

THE MODEL \rightarrow EULAG-MHD

Solve the ideal MHD equations in the anelastic approximation in a rotating stratified shell of electrically conducting plasma, from 0.61 to 0.96 $\rm R_{\odot}$, with the solar luminosity forced between bottom and top.

$$\frac{\partial u}{\partial t} = -\nabla \pi' - \mathbf{g} \frac{\Theta'}{\Theta_o} + 2u \times \Omega + \frac{1}{\mu \rho_o} (B \cdot \nabla) B,$$

$$\frac{D\Theta'}{Dt} = -u \cdot \nabla \Theta_e + \mathcal{H} - \alpha \Theta',$$

$$\frac{DB}{Dt} = (B \cdot \nabla) u - B(\nabla \cdot u).$$

$$\nabla \cdot (\rho_o u) = 0,$$

 $\nabla \cdot \boldsymbol{B} = 0.$

✓ The background stratification is convectively unstable between r/ R_{\odot} = 0.71 and r/ R_{\odot} =0.96, and stable below.

- \checkmark Initial conditions: unmagnetized hydrostatic, random flow and field perturbations introduced at *t*=0.
- ✓ Typical resolution used: 128 in ϕ x 64 in θ x 47 in r
- ✓ Parallelized to 128 cores (scalable up to \sim 10000 cores and possibly more...)

Ghizaru et al 2010, ApJL, **715**, L133 Smolarkiewicz, P K , Charbonneau, P, 2013 J. Comput. Phys. 236, 608-623

SMALL SCALE FLOWS

LARGE SCALE FLOWS

 ✓ Reasonably solar-like internal differential rotation (ratio pole to equator 3 times slower than the Sun)

✓ Tachocline-like shear layer below convection zone

 ✓ Complex meridional circulation pattern (return flow at the BCZ and poleward directed in the top layers, in the mid to high latitudes interval)

LARGE SCALE FIELDS (SIMULATION M37A)

B, at r=0.718

 ✓ Kilo Gauss-strength, large-scale magnetic fields, antisymmetric about equator and undergoing regular polarity reversals every ~ 40 years. The toroidal component is concentrated at mid-latitudes, rather than low latitudes.

✓ Toroidal component strongly concentrated immediately beneath core-envelope interface.

LARGE SCALE FIELDS (SIMULATION M37A)

B_r at r=0.93841366

✓ Well-defined dipole moment, with rotation axis but in phase with internal toroidal component

Other interesting features in these simulations

✓ Evidence for the presence of a $\alpha^2 \Omega$ dynamo working *Racine, E. et al 2011, ApJ, 735, 46 Simard, C. et al 2013, ApJ, 768, 16*

✓ Magnetic related cyclic modulation of large-scale meridional flow in convection zone *Passos, D. et al 2012, Sol. Phys., 279, pp.1-22*

✓ Solar-like cyclic torsional oscillations (correct amplitude and phasing). Beaudoin, P. et al 2013, Sol. Phys., 282, pp.335-360

BUILDING PROXIES OF SOLAR ACTIVITY

Procedure: integrate over highlighted areas (independently in both hemispheres), square and normalize amplitude

PROXIES OF SOLAR ACTIVITY (1)

Toroidal field proxy

STATISTICAL PROPERTIES

0.7 0.8 0.9 1.0

Correlation between maxima in both hemispheres

 $m37a \rightarrow r = -0.21$

 $Sun \rightarrow r = 0.83$ Li et al 2009, ApJ 691, 75

Histogram of cycle period for the north and south

Peak at ~ 40 yr

Histogram of cycle amplitude for the north and south Bimodal distribution?

"WALDMEIER" RULES

Lag analysis between minima in both hemispheres

Histogram peaks at -2,6 yr. Tendency for minima to occur first on the northern hemisphere

PROXIES OF SOLAR ACTIVITY (2)

Dipolar field proxy

RELATIONSHIPS BETWEEN PROXIES (EXAMPLES...)

arrelations	Cycle N Amp. North	Cycle N Amp. South	Cycle N+1 Amp. North	Cycle N+1 Amp. South
Cycle N Amp. North	1	-0.214	0.097	0.05
Cycle N Period North	-0.662	-0.079	-0.273	0.222
Rising time N North	-0.462	0.017	-0.19	0.044
Dipole N Amp. North	0.637	-0.23	0.021	-0.02
Cycle N-1 Amp. South	0.024	-0.035	0.435	-0.049
Cycle N Period South	-0.107	-0.228	0.147	-0.262
Rising time N South	-0.372	-0.011	0.168	-0.154
Dipole N Amp. South	0.061	0.634	-0.075	-0.024

Note: complete table 24 x 24

HUNTING FOR OTHER RELATIONSHIPS...

Example: Correlation map between the toroidal field amplitude and $U_{\boldsymbol{\theta}}$

Comparison between the kinetic energy of the U_θ component compared to the proxy for the toroidal field

✓ We can play the same game between all large scale field and flow components

PRELIMINARY RESULTS SUMMARY

- ✓ Possibility to generate long stable solution with many cycles
- ✓ Hemispheric magnetic activity decoupling in terms of cycle amplitude. Does this implies independent dynamo saturation mechanisms for the two hemispheres?
- ✓ The Waldmeier rules are moderately reproduced in these cycles
- ✓ Cyclic modulation of large scale flows, specially in the θ direction
- ✓ So far no precursor for the cycle amplitude have been found.
- ✓ Analysis keep in other fronts...

ONGOING ANALYSIS TO THE SIMULATIONS AND OTHER PRELIMINARY RESULTS (1)

Exchanges between energy reservoirs...

Passos, Beaudoin, Cossette, Charbonneau

ONGOING ANALYSIS TO THE SIMULATIONS AND OTHER PRELIMINARY RESULTS (1)

Radial component of the Poynting flux

Passos, Beaudoin, Cossette, Charbonneau

ONGOING ANALYSIS TO THE SIMULATIONS AND OTHER PRELIMINARY RESULTS (2)

Convective energy cyclic modulation...

Cossette, Beaudoin, Charbonneau, ...

ONGOING ANALYSIS TO THE SIMULATIONS AND OTHER PRELIMINARY RESULTS (3)

Tachocline MHD instabilities and the dynamo saturation

Ghizaru, Charbonneau, Smolarkiewicz

Stay tuned!

http://www.astro.umontreal.ca/~paulchar/grps

Energy evolution in the simulation

