

Fonds de recherche Nature et technologies Québec 🐏 😫

CQ Calcul Québec

DYNAMO MODELING OF STELLAR ACTIVITY CYCLES

Caroline Dubé Space Climate 5

H-K PROJECT

 Observations of stellar cycles in the Ca II HK band since the mid-1960s

Caroline Dubé - Space Climate 5

- Goal: to numerically reproduce observationally inferred relationships relating rotation period, cycle period, luminosity, Rossby number, etc.
- 20 simulations with various rotation rates (5) & timescales for thermal forcing (4)
- EULAG-HD: global 3D hydrodynamical simulation
- $\alpha \Omega$ mean-field dynamo model using EULAG's output to specify large-scale flows and α -tensor

MEAN-FIELD DYNAMO

- Scale separation into a "mean" part and a "fluctuating" part
- Azimuthal averaging (·) of the fluctuating component gives zero

•
$$\boldsymbol{\varepsilon} = \langle \boldsymbol{u}' \times \boldsymbol{B}' \rangle, \quad \varepsilon_i = \alpha_{ij} \langle B_j \rangle + \beta_{ijk} \partial_k \langle B \rangle_j + \cdots$$

- Assume that the large-scale fields are axisymmetric, then $\langle \mathbf{B} \rangle = \langle B_{\phi} \rangle \hat{\mathbf{e}}_{\phi} + \nabla \times (\langle A_{\phi} \rangle \hat{\mathbf{e}}_{\phi})$
- Turbulent EMF becomes a source term in the mean-field dynamo equations

MEAN-FIELD DYNAMO

• $\alpha \Omega$ -dynamo equations neglecting meridional circulation:

$$\frac{\partial A}{\partial t} = \eta \left(\nabla^2 - \frac{1}{\varpi^2} \right) A + C_{\alpha} \alpha B$$
$$\frac{\partial B}{\partial t} = \eta \left(\nabla^2 - \frac{1}{\varpi^2} \right) B + \frac{1}{\varpi} \left(\frac{d\eta}{dr} \right) \frac{\partial(\varpi B)}{\partial r} + C_{\Omega} \varpi \left[\nabla \times \left(A \hat{\mathbf{e}}_{\phi} \right) \right] \cdot \left(\nabla \Omega \right)$$

• $\varpi = r \sin \theta$, θ polar angle

•
$$C_{\alpha} = \frac{\alpha_0 R}{\eta_0}$$
 and $C_{\Omega} = \frac{\Omega_0 R^2}{\eta_0}$
• $C_{\alpha} = 12.5$, $C_{\Omega} = \frac{1.5D_{\text{crit}}}{C_{\alpha}}$, $\Delta \eta = 10$

RELATING α to kinetic helicity

For an isotropic and homogeneous turbulent flow,
α is diagonal and can be expressed as follow
(Second Order Correlation Approximation):

$$\alpha(r,\theta) = -\frac{\tau(r)}{3}h_{v}(r,\theta),$$

where
$$h_v = \langle \boldsymbol{u}' \cdot \nabla \times \boldsymbol{u}' \rangle$$
 and $\tau = \frac{H_{\rho}}{u'_{\rm rms}}$

 Last piece missing, amplitude limiting nonlinearity

$$\alpha \longrightarrow \frac{\alpha}{1 + \left(\frac{B}{B_{\text{eq}}}\right)^2}$$

EULAG-HD RESULTS

Temperature

Radial component of the velocity

EULAG-HD RESULTS

r0.5t20, Ro=0.0756

r1t20, Ro=0.0296

Caroline Dubé - Space Climate 5

VARIATION OF $\Delta\Omega$

- $\Delta\Omega/\Omega_0 \propto {\Omega_0}^{-0.56}$ with all points, or $\Delta\Omega/\Omega_0 \propto {\Omega_0}^{-0.69}$ omitting simulations without equatorial acceleration
- Brown et al. (2008) found $\Delta \Omega \propto {\Omega_0}^{0.3}$

EULAG-HD RESULTS

Caroline Dubé - Space Climate 5

DYNAMO SOLUTIONS

 $lpha \Omega$ dynamo model

3D global MHD

DYNAMO SOLUTIONS

CYCLE RELATIONSHIPS

LE RELATIONSHIPS

Caroline Dubé - Space Climate 5

1.8

15

2.0

2.2

Solar internal structure model

- Implicit dependence of the Rossby number on the fluctuating part of the velocity's radial component
- Semi-empirical Rossby number used in the literature based on the variation of the luminosity and the convective flow in a 1:1 ratio
- α -quenching is the only saturation mechanism used while Racine et al. (2011), and others, suggest that magnetic backreaction on large-scale flows is the primary mechanism

Results are model dependent

SUMMARY

- 20 different profiles of differential rotation and kinetic helicity using EULAG-HD
- $\alpha_{\phi\phi}$ was reconstructed using SOCA
- Input for a mean-field $\alpha \Omega$ dynamo model, we constructed the large scale magnetic field
- P_{cyc} vs P_{rot} relationship robust feature of $\alpha \Omega$ dynamo model; not so for Babcock-Leighton model
- Fail to reproduce other relationships
- α-quenching probably not principal mechanism for saturation
- Next step, EULAG-MHD simulations

THANK YOU

Caroline Dubé - Space Climate 5

VARIATION OF u'rrms

Caroline Dubé - Space Climate 5

VARIATION OF f_c

Caroline Dubé - Space Climate 5