
• Spatiotemporal evolution of the zonally-averaged toroidal magnetic field for the 𝛼Ω model 
constructed from solution r1t20 (left) and for a EULAG-MHD simulation otherwise identical 

• Top panels, time-latitude diagram at 𝑟 𝑅 = 0.85 (left) and 𝑟 𝑅 = 0.88 (right)  
• Bottom panels, time-radius diagram at 22.5° latitude (left) and 25° latitude (right) 
• Dashed line, base of the convective zone 
• 𝛼Ω dynamo solution: - color scale codes the normalized magnetic field strength 
 - primary dynamo mode: - concentrated at low latitudes 
   - antisymmetric with respect to the equator 
   - migrates poleward  
 - second, shorter cycle at polar latitudes 
 - both modes peaking at 𝑟/𝑅 ≈ 0.9 and migrating upward  
• MHD solution: - color scale denotes the magnetic field strength in Tesla 

- cycle located at low latitudes, antisymmetric relative to the equator, peaking 
at 𝑟/𝑅 ≈ 0.9 and migrating upward 

Stellar dynamos and cycles from numerical simulations of convection* 
Caroline Dubé† & Paul Charbonneau 

Université de Montréal, † dube@astro.umontreal.ca 

We present a series of kinematic axisymmetric mean-field 𝛼Ω dynamo models applicable to solar-type stars, for 20 distinct combinations of rotation rates and luminosities. The internal differential 
rotation and kinetic helicity profiles required to calculate source terms in these dynamo models are extracted from a corresponding series of global three-dimensional hydrodynamical simulations 
of solar/stellar convection, so that the resulting dynamo models end up involving only one free-parameter, namely the turbulent magnetic diffusivity in the convecting layers. Even though the 𝛼Ω 
dynamo solutions exhibit a broad range of morphologies, and sometimes even double cycles, these models manage to reproduce relatively well the observationally-inferred relationship between 
cycle period and rotation rate. On the other hand, they fail to capture the observed increase of magnetic activity levels with rotation rate. This failure is due to our use of a simple algebraic 𝛼-
quenching formula as the sole amplitude-limiting nonlinearity. This suggests that 𝛼-quenching is not the primary mechanism setting the amplitude of stellar magnetic cycles, with magnetic-
reaction on large-scale flows emerging as the more likely candidate. This inference is coherent with analyses of various recent global magnetohydrodynamical simulations of solar/stellar convection. 

*Based on a paper by the same title submitted to The Astrophysical Journal on May 22nd, 2013. Preprint available on demand. 

Since the mid-1960s, data on cyclic magnetic activity has been obtained from the Mt Wilson 
survey of chromospheric emission (Ca II H & K bands) in a sample of nearby solar-type stars. 
Analyses of these data has led to the determination of various empirical relationships linking 
fundamental stellar parameters to cycle periods (𝑃cyc), mean chromospheric H-K flux ratio 

( 𝑅′HK ), and more recently X-ray-to-bolometric luminosity ratio (𝑅X). Not surprisingly, attempts 
to model stellar cycles using dynamo models can lead to a wide variety of results, depending on 
the assumptions made. We use hydrodynamical simulations of convection (using EULAG 
model) to produce large-scale flow and 𝜶-tensor profiles that are then used as input to 
kinematic mean-field 𝜶𝜴 dynamo models.  

Rotation affects convective velocities. The convective energy flux increases with increasing Ro 
more slowly than one would expect from its rotational dependence.  

• Variation of the convective thermal flux 𝑓c at 𝑟 𝑅 = 0.85 vs. inverse Rossby number Ro-1 

• Color of symbols: rotation rate; Line segment style: thermal forcing timescale 

• Well-fit by a power-law with index -0.56 (grey line) 

• Differs from -1 (dashed-triple-dot straight line):  convective energy transport affected by 
rotation 

• Differential rotation profiles (left) and mean kinetic helicity profiles (right).  
• Rotation rate, left to right: Ω0 Ω⨀ = 0.5, 1 and 3 
• Timescale for thermal forcing, bottom to top: ts = 1, 5 and 20  
• Dashed line, base of the convective zone 
• Differential rotation profiles:  - normalized according to the rotation rate Ω0 
 - color scale, black (slower than Ω0) to white (faster than Ω0) 
 - solar-like surface differential rotation profile 
 - isocontours, too strong alignment with the rotation axis 
 - alignment most pronounced, small ts or high Ω0 
 - no clear relationship to Ro 
• Mean kinetic helicity profiles: - color scale indicates the magnitude and sign of ℎ𝜐 in m s-2 
  - range increasing from top to bottom 
  - peak in polar regions and secondary extrema at low latitudes 
  - negative (positive) in the Northern (Southern) hemisphere 
  - sign change near the base of the convection zone 

Validation of our 𝛼Ω mean-field dynamo model. We can capture the main features of a global 
MHD simulation run at the same rotation rate and forcing timescale. 
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Physical parameters extracted or used for each simulation 

Namea 𝛀𝟎 𝛀⨀  𝒕𝐬 [s.d.] 𝒖′𝒓 𝐫𝐦𝐬 [m s-1]b Roc 𝒇𝐜 [m s-1 K]d 𝜼𝟎 [m2 s-1]e 𝑫𝐜𝐫𝐢𝐭
f 𝑷𝐜𝐲𝐜 [d]g 𝑷𝐜𝐲𝐜 𝟐  [d]g 𝑬𝐦𝐚𝐠 × 𝟏𝟎𝟐𝟕 𝐉 h 

r0.5t1 0.5 1 40.8 0.1884 32.5 1.6e9 185 - - 2153 

r0.5t5 0.5 5 25.1 0.1158 10.7 1.0e9 3050 41.86 - 260 

r0.5t20 0.5 20 16.4 0.0756 8.7 6.3e8 16500 84.54 - 405 

r0.5t50 0.5 50 10.7 0.0494 13.2 5.3e8 17500 33.22 - 5 

r0.75t1 0.75 1 31.8 0.0981 22.9 1.1e9 3600 58.94 - 813 

r0.75t5 0.75 5 24.8 0.0763 11.2 8.6e8 9250 36.55 54.13 294 

r0.75t20 0.75 20 13.9 0.0430 8.1 5.5e8 7350 119.22 - 158 

r0.75t50 0.75 50 9.8 0.0303 12.0 5.0e8 13500 126.65 - 179 

r1t1 1 1 29.5 0.0683 19.8 9.4e8 5750 57.82 33.00 303 

r1t5 1 5 19.8 0.0457 9.1 7.0e8 5500 87.98 - 196 

r1t20 1 20 12.8 0.0296 7.5 5.1e8 8750 108.22 29.61 63 

r1t50 1 50 12.6 0.0291 12.6 1.0e9 42500 43.47 262.87 2886 

r1.5t1 1.5 1 21.1 0.0324 10.9 6.6e8 9500 133.72 - 485 

r1.5t5 1.5 5 16.5 0.0255 7.3 5.8e8 8750 108.93 - 133 

r1.5t20 1.5 20 12.0 0.0186 6.1 5.1e8 10000 165.82 - 226 

r1.5t50 1.5 50 11.6 0.0179 9.9 1.0e9 43000 76.57 76.57 824 

r3t1 3 1 14.0 0.0108 4.5 3.9e8 13000 - - 25 

r3t5 3 5 11.1 0.0086 3.0 3.6e8 26500 258.50 - 561 

r3t20 3 20 9.5 0.0073 3.5 3.5e8 19000 73.31 - 16 

r3t50 3 50 9.4 0.0072 4.7 4.2e8 25500 74.82 - 35 
a Simulation code name. The first number corresponds to the rotation rate of the stable layer (column 2) and the last number 
corresponds to the thermal forcing timescale (column 3). 
b rms (zonal, latitudinal and temporal) average of the radial small-scale flow at mid-convective zone depth 
c Rossby number defined by Ro = 𝑢′𝑟 rms Ω0𝐿 , where L is the thickness of the convective zone 
d Convective thermal flux at mid-convection zone 
e (Turbulent) magnetic diffusivity defined by 𝜂0 =

𝜏

3
𝑢′rms

2 
f Critical dynamo number 
g Main and secondary cycle period 
h Magnetic energy 

The magnitude of differential rotation varies with 
thermal forcing timescale and rotation rate.  
• Angular velocity contrast: 

ΔΩ = max Ω 𝑟, 𝜃 − min Ω 𝑟, 𝜃  

• Slope shallower than -1, 𝚫𝛀 increases with 𝛀𝟎 
• Similar to Brown et al. (2008):  ΔΩ ∝ Ω0

0.3 

• Differential rotation contrast ΔΩ Ω0  vs. 
rotation rate Ω0 

• Open symbols, simulations without equatorial 
acceleration 

• ΔΩ Ω0 ∝ Ω0
−0.56 (grey line), all points 

• ΔΩ Ω0 ∝ Ω0
−0.69  (fit not shown), omitting  

simulations without equatorial acceleration 

• Kinematic axisymmetric αΩ dynamo model in spherical geometry 
• Mean (large-scale and axisymmetric) magnetic field: 

𝑩 𝑟, 𝜃, 𝑡 = 𝛻 × 𝐴 𝑟, 𝜃, 𝑡 ê𝝓 + 𝐵 𝑟, 𝜃, 𝑡 ê𝝓 

• 𝐵, toroidal component; 𝛻 × 𝐴ê𝝓 , poloidal component  

• Mean (axisymmetric) zonal flow, with 𝜛 = 𝑟 sin 𝜃, no meridional flow: 
𝒖 𝑟, 𝜃 = 𝜛Ω 𝑟, 𝜃 ê𝝓 

• Dimensionless evolution equations for A and B in the 𝛼Ω limit: 
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• 𝐶𝛼 = 𝛼0𝑅 𝜂0 ; 𝐶Ω = Ω0𝑅
2 𝜂0  

• R, solar radius; 𝛼0, Ω0, and 𝜂0, characteristic scaling values 
• Coefficient α: - 𝜙𝜙 component of the full 𝛼-tensor  

- Second-Order Correlation Approximation (SOCA; based on a 
result of Racine et al. 2011): 

𝛼 = −
𝜏

3
𝒖′ ∙ 𝛻 × 𝒖′ = −

𝜏

3
ℎ𝜐 

  - ℎ𝜐, mean kinetic helicity 
 - 𝜏, correlation time of the turbulence: 𝜏 = 𝐻𝜌 𝑢′rms  

 - 𝐻𝜌, density scale height of the background stratification  

- 𝑢′rms, rms average (zonally, latitudinally and temporally) of 
the small-scale part of the flow velocity 

• Amplitude-limiting nonlinearity, algebraic 𝛼-quenching: 

𝛼 ⟶
𝛼

1 + 𝐵 𝐵eq 
2 

• 𝐵eq ∝ 𝑢′rms, equipartition field strength 

We successfully reproduce the trend linking Pcyc/Prot to 1/Prot. 

• Variation of the ratio Pcyc/Prot with 1/Prot 

• Circles and asterisks, main and secondary cycle respectively 
• Vertical dotted lines, link secondary cycles to primary ones 
• Asterisks displaced horizontally for clarity 
• 𝑃𝑐𝑦𝑐 𝑃𝑟𝑜𝑡 ∝ 𝑃𝑟𝑜𝑡

−1.47 (grey line) neglects secondary cycles  

• Coherent with the results of Baliunas et al. (1996) (slope of −0.74) and Oláh 
et al. (2009) (slope of −0.81 ± 0.05) 

More dynamo solutions across parameter space. 
Even in the context of our very simple 𝛼Ω 
formulation a wide variety of dynamo modes can 
be produced. 

Conclusion 
• Double cycles appear naturally for rotation rates near solar. 
• The equator-to-pole angular velocity contrast increases moderately with increasing rotation rate. 
• The general decrease of the cycle period with increasing rotation rate is a very robust property of 
𝜶𝛀 dynamo models, which does not depend sensitively on details of the dynamo mode. 

• Failure to reproduce the relationship relating the activity level to the Rossby number, suggesting 
that 𝜶-quenching is not the primary amplitude-limiting nonlinearity.  

Ro =
𝑢′𝑟 rms

Ω0𝐿
 

Smaller 𝒕𝐬 drives more 
vigorous convection 


