Solar Influence on North Atlantic Climate

Rémi Thiéblemont LATMOS/IPSL, CNRS, Paris, France

<u>Acknownledgements</u>: K.Matthes (GEOMAR, Germany), N.-E. Omrani (Geophysical Institute, Norway), Kunihiko Kodera (Nagoya Univ., Japan), S. Misios (Univ. Thessaloniki, Greece), D. Mitchell (Univ. Oxford, UK), L. Hood (Univ. Arizona, USA)

Solar variability influence on regional climate

- What do we observe ? -

Sea level pressure in DJF (Smax – Smin)

(Thiéblemont et al., 2015)

Solar signal projects onto an AO/NAO-like pattern (Matthes et al., 2006; Ineson et al., 2011) which amplifies with a lag of a few years (Gray et al., 2013; Scaife et al., 2013).

Which mechanisms drive this response ?

Major role of the stratosphere: "Top-down"

Importance of ocean-atmosphere interactions

Ocean memory of the signal and positive feedback on tropospheric circulation \Leftrightarrow lagged amplified response (*Scaife et al.*, 2013; *Gray et al.*, 2013, *Andrews et al.*, 2015)

Proposed mechanisms

Model response using CESM(WACCM)

Space Climate Good agreement with observations

North Atlantic Oscillation variability

Although not significantly coherent with the solar 11-yr solar cycle, the model simulates a strong internal quasi-decadal mode (Czaja, 2003; Park and Latif, 2005)

North Atlantic Oscillation synchronization

The solar variability seems to **synchronize** an internal quasi-decadal mode. Mechanisms ?

Stratosphere response

NAO-based composites Max-Min at lag -1 Zonal mean zonal wind

- Same signal in the tropopshere.
- Strong coupling with the stratosphere when solar variability is considered.
- Synchronization consistent with the "top-down" mechanism.

Summary

 It seems that, in our experiments, the solar quasi-decadal variability synchronizes a NAO intrisic mode of variability ...

Regional climate response in CMIP5 simulations

Very large model spread in CMIP5 simulations

Space Climate Symposium, 7th April 2016, Levi, Finland

15

0.9

0.6

0.3

0.0

0.3

-0.6

0.9

-1.2

-1.5

Stratosphere response in CMIP5 simulations

Top-down signal not well reproduced in CMIP5 simulations

Why are solar signals so difficult to simulate/identify ?

Aliasing signals

The secondary temperature signal in lower tropical stratosphere may partly result from an **aliasing with volcanic signal**.

Conclusions

- Increasing evidences that solar irradiance variability projects on regional climate (and at different timescales) climate natural variability and seasonnal-to-decadal prediction.
- Proposed mechanisms involved complex couplings between the different components of the climate system...
- ... but these mechanisms are still far from being well simulated in climate models !
- What to do ? ⇔ identification of robust solar signals and quantification, identifying prevalent mechanisms, improve model formulation...

Thank you for your attention