stitute of Technology Zurich

The Influence of Middle Range Energy Electrons on Chemistry and Regional Climate

Pavle Arsenovic¹ E. Rozanov^{1,2}, A. Stenke¹, B. Funke³, J. M. Wissing⁴, K. Mursula⁵, F. Tummon¹ and T. Peter¹

¹Institute for Atmospheric and Climate Science, ETH Zürich, Switzerland ²PMOD/WRC, Davos, Switzerland ³Instituto de Astrofisica de Andalucia, CSIC, Granada, Spain ⁴Universität Osnabrück, Lower Saxony, Germany ⁵ReSoLVE Centre of Excellence, Oulu, Finland

wiss Federal Institute of Technology Zurich

Energetic Particles

- Galactic cosmic rays (up to 5x10¹³ MeV)
- Solar protons (up to 500 MeV)
- Auroral low energy electrons (<30 keV)
- Radiation belt middle energy electrons (30 to 300 keV)
- Radiation belt high energy electrons (300 keV to 10 MeV)

viss Federal Institute of Technology Zurich

Conclusions

Energetic Particles

- Galactic cosmic rays (up to 5x10¹³ MeV)
- Solar protons (up to 500 MeV)
- Auroral low energy electrons (<30 keV)
- Radiation belt middle energy electrons (30 to 300 keV)
- Radiation belt high energy electrons (300 keV to 10 MeV)

Are MEE important for chemistry and climate?

- Originate from outer radiation belt
- Energy 30-300 keV
- Produce HO_x and NO_x below 80 km
- HO_x and NO_x induced ozone depletion
- Potentially important for chemistry and climate

EICH Eldgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Are MEE important for chemistry and climate?

- Originate from outer radiation belt
- Energy 30-300 keV
- Produce HO_x and NO_x below 80 km
- HO_x and NO_x induced ozone depletion
- Potentially important for chemistry and climate

Introduction Data description Results

SOCOLv3-MPIOM Model Framework

stitute of Technology Zurich

MEE Ionization Data

- Ionization rates from Atmosphere Ionization Module
 Osnabrück (AIMOS) by Wissing and Kallenrode (2009)
- Time period: 2002-2010
- Comparison between the simulation with MEE and reference simulation (NOMEE)

Introduction Data description Results

#/m³s

EITH Eldgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

AIMOS Ionization Rates Data

y=2005 doy=1 0.18 hPa

8

ETH Eidgenössische Technische Hachschule Zürich

Swiss Federal Institute of Technology Zurich

AIMOS Ionization Rates Data

ETH

Eldgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Conclusions

AIMOS Ionization Rates Data p=0.01hPa, hemispheric mean

EIdgenössische Technische Hochschule Zürich

Swiss Federal Institute of Technology Zurich

Conclusions

NO_x zonal mean difference [ppb] (MEE-NOMEE) 2002-2005

Eldgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Conclusions

Comparison of modeled NO_y and observed NO_y^{*} [ppm] for 70 km 70° to pole mean

*MIPAS, Funke et al, 2014

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Conclusions

Comparison of modeled NO_y and observed NO_y [ppm] for 60 km 70° to pole mean

Eldgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich Introduction Data description Results

Conclusions

Comparison of modeled NO_y and observed NO_y [ppm] for 50 km 70° to pole mean

ETH Eldgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Conclusions

Ozone zonal mean difference [ppb] (MEE-NOMEE) 2002-2005

INSTITUTE FOR ATMOSPHERIC AND CLIMATE SCIENCE

ETH Eldgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Ozone profile comparison with Andersson et al., 2014

16

Introduction Data description Results

Conclusions

Eldgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

-

Temperature zonal mean difference [K] (MEE-NOMEE) 2002-2005

INSTITUTE FOR ATMOSPHERIC AND CLIMATE SCIENCE

Zonal wind difference [m/s] (MEE-NOMEE) 2002-2005

INSTITUTE FOR ATMOSPHERIC AND CLIMATE SCIENCE

2m temperature difference (MEE-NOMEE) boreal winter 2002-2005

Introduction Data description Results

ETH

2m temperature difference (MEE-NOMEE) austral winter 2002-2005

titute of Technology Zurich

Conclusions

- MEE produce significant amount of NO_x for geomagnetically active period
- Total model NO_{y} follows the seasonal cycle, but underestimates NO_{y} above 50 km altitude
- Decrease of ozone in mesosphere (boreal 25%, austral 40%)
- Intensification of NH polar vortex and change in temperature
- Changes in surface temperature (Antarctica, continental Asia)

ETH

Eldgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Swiss Federal Institute of Technology Zurich

SLP difference (MEE-NOMEE) boreal winter 2002-2005

18

Swiss Federal Institute of Technology Zurich

SLP difference (MEE-NOMEE) austral winter 2002-2005

