

Solar induced variability in the thermosphere over the last 70 years

Linda Hunt, Science Systems and Applications, Inc Marty Mlynczak, NASA Langley Research Center

The SABER Science Team

- The Big Picture
- Overview of Thermosphere Energy Budget
- Radiative Cooling in the Thermosphere 2002 present
- A View to the Past
 - Are solar cycles more similar than different?
- Summary

The Big Picture....

- Major objective is to understand the climate and energy balance of the thermosphere
- This is a very complex interaction of radiative transfer, chemical/gas kinetics, energy storage, energy conversion, and solar physics
- We have learned over the past 14 years of observations from the TIMED satellite that the energy budget varies on time scales from a *few days* to *decades*
- This presentation summarizes some of the major results to date

Overview of the Thermosphere Energy Budget

Thermosphere Energy Balance – Thermal Structure

Thermosphere Energy Balance – Energy Inputs

Thermosphere Energy Balance – Energy Redistribution

Thermosphere Energy Balance – Energy Outputs

Thermospheric Heat Sink

Radiative Cooling in the Thermosphere

Radiative Cooling in the Thermosphere

- Radiative cooling is the action of infrared radiation to reduce the kinetic temperature of the neutral atmosphere
- It is accomplished almost entirely by two species:
 - Carbon Dioxide (CO₂, 15 μm)
 - Nitric Oxide (NO, 5.3 μm)
- Collisions between atomic oxygen (O) and CO₂ and NO initiate the cooling process:
 - NO (υ = 0) + O → NO (υ = 1) + O

(Kinetic Energy Removal)

- NO (υ = 1) → NO (υ = 0) + hν (5.3 μm)
- NO (υ = 1) + O \rightarrow NO (υ = 0) + O

(Kinetic Energy Loss)

- (Kinetic Energy Returned)
- Collisional process are highly temperature dependent

Sounding of the Atmosphere using Broadband Emission Radiometry -- SABER --

SABER Experiment

- Limb viewing, 400 km to Earth surface
- Ten channels 1.27 to 16 μm
- Over 30 routine data products including energetics parameters
- 8.3 million radiance profiles per channel!
- Cryo-cooler operating excellently at 77 K
- Noise levels at or better than measured on ground
- Now in 15th year of on-orbit operation
- Over 1200 refereed journal articles!

75 kg, 77 watts, 77 x 104 x 63 cm, 4 kbs

NO and CO₂ Cooling Parameter Derivations by SABER

SABER Global Power from CO_2 in SC 24 Jan 2010 – Dec 2015; 100 – 140 km

Strong semi-annual oscillation evident

Geomagnetic activity always evident in radiative cooling

SABER Global Power from NO in SC 24 Jan 2010 – Dec 2015; 100 – 250 km

Sunspot and cooling maxima not coincident Each "spike" is the response to a geomagnetic event St. Patrick's Day Storm is largest event since 2010

SABER Global Power from CO₂ Jan 2002 – Dec 2015; 100 – 140 km

Over 5200 days of data!

Strong semi-annual cycle evident in global cooling Evidence of response to geomagnetic activity in each "spike"

SABER Global Power from CO₂ Jan 2002 – Dec 2015; 100 – 140 km

Over 5200 days of data!

SABER Global Power From NO Jan 2002 – Dec 2015: 100 – 250 km

NO Cooling at Peak of SC 24 (12/2014) was highest level since 12/2003

From the perspective of integrated energy, just how different is one solar cycle from another?

Fraction of Thermosphere Global Infrared Power CO₂ and NO

A View to the Past

60-day Running Means – Nitric Oxide Power Strong Visual Correlation in NO, Ap, Dst, F10.7

Multiple Linear Regression Fit NO Power as Function of F10.7, Ap, Dst

Multiple Linear Regression Fit CO₂ Power as Function of F10.7, Ap, Dst

Thermosphere Infrared Power as Function of F10.7, Ap, Dst

Reconstruct cooling time series back to 1947 using extant F10.7, Ap, Dst

CO2 is the dominant cooling mechanism above 100 km

Percent of Thermosphere Infrared Cooling CO₂ and NO

Thermosphere Infrared Power as Function of F10.7, Ap, Dst

No consistent relationship between sunspot max and cooling max over six solar cycles.

Thermosphere Infrared Power as Function of F10.7, Ap, Dst

There is only a 6.7 % standard deviation about the mean, so the solar cycles are not that different from a total energy perspective.

Summary

- SABER data illustrate a very complex and interesting thermosphere that responds to solar variability on timescales from days to decades
- Past 5 solar cycles show IR emission from atmosphere varies by at most 17% from min to max, with a standard deviation of less than 7% about the mean
 - Thermosphere's IR response is surprisingly consistent from one solar cycle to the next.
 - Implies solar energy inputs are consistent when integrated over the solar cycle.
 - Solar cycles appear more similar than different.
 - Are new metrics for solar max/min for atmosphere response needed?

Acknowledgement

- Today we have looked at data from the NASA TIMED satellite and the SABER instrument that was launched over <u>14 years</u> ago on 7 December 2001.
- This is possible only because in the late 1990's, numerous engineers, project managers, resource analysts, and technicians did an excellent job of building and testing the TIMED instruments and satellite
- This talk is dedicated to them, for the outstanding job they did, which provides all of us the privilege of doing science with the data

CO₂ Global Power 2002 - 2015 Lomb Normalized Periodogram

NO Global Power 2002 - 2015 Lomb Normalized Periodogram

