Variation in CME Deflection and Rotation over the Solar Cycle

Christina Kay NPP Fellow NASA GSFC/USRA christina.d.kay@nasa.gov

collaborators: N. Gopalswamy (NASA GSFC), M. Opher (Boston Univ.)

Wednesday, April 13, 16

Historical Perspective

- Skylab observations suggested deflection towards equator (Hildner 1977) but trend less obvious in Solar Maximum Mission observations (MacQueen+ 1986)
- STEREO observations show both latitudinal and longitudinal deflections (e.g. Byrne+ 2010, Liu+ 2010, Isavnin+ 2014)
- CMEs deflect toward the Heliospheric Current Sheet and away from coronal holes (e.g. Cremades & Bothmer 2004, Kilpua+ 2009, Gopalswamy+ 2009)
- Direction of deflection typically same as direction of magnetic gradients (Shen+ 2011, Gui+ 2011)
- Direction and magnitude of deflections should vary as the solar magnetic field varies over the solar cycle

Deflection and Rotation

- Lack of precise definitions/ consistency
- Analogous to pitch, yaw, and roll
 - Rotation = roll

(NASA GSFC/USRA)

- Deflection \approx yaw + pitch
- Measure deflection with respect to Sun-centered coordinates, motion occurs with respect to location of footpoints

C. Kav

Forecasting a CME's Altered Trajectory

Kay et al. (2013, 2015)

Wednesday, April 13, 16

C. Kay (NASA GSFC/USRA)

ForeCAT CME

- Describe CME flux rope with torus
 - Currently do not include any deformation of shape

Space Climate 6

C. Kay

(NASA GSFC/USRA)

Magnetic Background

Wednesday, April 13, 16

Single CME

Wednesday, April 13, 16

Angular Momentum

- Constant angular momentum beyond ~5 Rs²
 - CME moves in straight line but lat/lon can still change
- Coronagraph obs. from single viewpoint can be confusing

Carrington Rotations

 Simulate 2 or 3 CMEs from both active regions and quiet sun for each Carrington Rotation

Use same CME parameters for each case

C. Kay

(NASA GSFC/USRA)

Solar Minimum

1.5

0.98

0.49

-0.49

-0.98

-1.5

0

- CR 2077 very weak background -> very little
 deflection/rotation
- Mostly lat deflection
- AR CMEs have largest lon component

- CR 1923 has larger B and stronger def/rot
- Deflection toward HCS, some influence of CH
- Rot toward HCS?

(NASA GSFC/USRA)

C. Kay

Rising Phase

5.7

3.8

1.9

0

-1.9

-3.8

-5.7

- Deflections increase in size and have larger
 Ion component
 - Quiet sun filaments
 can deflect as much as
 largest AR CME defs

- Can see effects of local AR gradients as well as HCS + CHs
- Rotation does not always align CME with HCS

Solar Maximum

28

19

9.3

0

-9.3

-19

-28

- Decrease in def of QS CMEs since near HCS
 - Large defs of AR CMEs
- B (G) Lat def away from equator due to high lat **HCS**

 Sometimes rotation aligns CME with HCS

(NASA GSFC/USRA)

 Can get complicated behavior due to complex background

Space Climate 6

C. Kay

Reflecting CME

- Initially deflects away from coronal hole on left
- Reaches coronal hole on right and motion changes

Wednesday, April 13, 16

C. Kay

(NASA GSFC/USRA)

Reflecting CME

Initially deflects away from coronal hole on left

Reaches coronal hole on right and motion changes

Space Climate 6

Wednesday, April 13, 16

Declining Phase

18

12

6.1

0

-6.1

-12

-18

- QS deflections increase relative to max
- Lat deflection not always toward equator due to low lat CH

- Less rotation than solar max (comparable to rise)
- Rotation to align with gradients
- Rotation overshoots alignment with HCS?

C. Kay (NASA GSFC/USRA)

Wednesday, April 13, 16

CME Expansion

- Deflection sensitive to expansion in lower
 Corona
 - Tends to increase as over-expansion increase
 - Sometimes causes change in direction
- Anomalous expansion as
 in SC 24 (Gopalswamy
 2014) → increase in
 CME deflections

C. Kay

(NASA GSFC/USRA)

Summary/Space Weather Seasons?

Solar Minimum	Rise Phase
Small def/rot	 Def/rot increases for AR/QS CMEs
Mostly lat def	 Lon def increases due to HCS inclination
 AR and QS CMEs can def the same 	and strength of ARs
amount	 AR/QS CMEs def similar amounts
• HCS/CH determine direction of deflection	AR CMEs have larger lon def than QS
(little AR effects)	ARs/CHs/HCS influence direction of def
	Rotation sometimes aligns CME with HCS
Solar Maximum	Declining Phase
 Largest def/rot for AR CMEs 	AR/QS def/rot comparable to rise phase
• Decrease in QS CME def due to proximity	(AR less, QS more relative to solar max)
of high lat HCS	 Lat def away from equator due to low lat
 Def away from equator due to high lat 	CHs
HCS	 AR/QS CMEs def similar amounts
 AR CMEs have larger lon def than QS 	AR CMEs have larger lon def than QS
 ARs/CH/HCS influence def direction 	 ARs/CH/HCS influence def direction
 Rotation sometimes aligns with HCS 	 Rotation sometimes aligns with HCS

C. Kay (NASA GSFC/USRA) Wednesday, April 13, 16

Implications

- On "average" CMEs deflect away from coronal holes toward the Heliospheric Current Sheet
 - Direction varies as the relative location of ARs, CHs, and the HCS changes throughout the solar cycle
 - Magnitude increases with solar magnetic field strength
 - Rotation towards aligning with HCS?
- Near solar max strong ARs can cause large longitudinal deflections and rotations deviating from "average" behavior
- "Seasonal" variation in Earth impacts?
 - Solar min small defs, but primarily Earth/equator-ward
 - Solar max large defs, but can deflect toward or away
 - Declining/rise somewhere in between, but with largest QS CME defs