

Multiradionuclide evidence for the solar origin of the cosmic-ray events of AD 774/5 and 993/4

Florian Mekhaldi, R. Muscheler, F. Adolphi, A. Aldahan, J. Beer, J. R. McConnell, G. Possnert, M. Sigl, A. Svensson, H.-A. Synal, K. C. Welten, T.E. Woodruff

Introduction

Background

Data set

Results

Premise

- Peaks in radiocarbon concentration (Δ¹⁴C) have been discovered which are so large that they have been attributed to a large cosmic-ray event they were dated to AD 774/5 (and AD 993/4)
- The exact cause of the peaks has been under debate
- Here we present the perspective offered by the additional radionuclides(¹⁰Be and ³⁶Cl) from ice cores

Background Discussion Introduction Data set Results Conclusions From cosmic rays to cosmogenic radionuclides Galactic cosmic rays

Cosmogenic radionuclides

The NEEM ice core drilling camp in northern Greenland. Credit: Raimund Muscheler

IntroductionBackgroundData setResultsDiscussionConclusionsA multiradionuclide approach

- Newly measured ¹⁰Be from the NGRIP and NEEM ice cores (Greenland) and the WAIS divide ice core (Antarctica)
- Available ³⁶Cl from the GRIP ice core (Greenland resolution of only 5 years)
- Modeled ¹⁴C prod. rates from Miyake et al. (2012, 2013) Δ¹⁴C data

Results

Discussion

Results

Discussion

Solar activity can only account for the variability around the 'background level' of the peak.

Solar activity can only account for the variability around the 'background level' of the peak.

Results

Discussion

Not a gamma-ray burst

From Pavlov et al. (Mon. Not. R. Astron. 2013)

- GRBs can produce ¹⁴C but should not lead to peaks in ¹⁰Be and/or ³⁶Cl
- A GRB would not be expected to impact radionuclide production (and deposition) in both hemispheres – not affected by Earth's magnetic field

Discussion

Conclusions

Relationship between ³⁶Cl/¹⁰Be ratios and spectral hardness

	¹ Tabl	le 2 Relative ³⁶ Cl/ ¹⁰ Be r	atios.	
	Sola	r proton event	Relative ³ °Cl/ ¹⁰ Be ratio	
	1	23 February 1956	1.2	
- -	2	20 January 2005	1.5	
E		ad 774/5	1.8± 0.2	
Ť		ad 993/4	2.1± 0.4	
<u>^</u>	3	29 September 1989	2.5	
S	4	29 October 2003	3	
le	1 5	14 July 2000	3.5	
Ë.	6	19 October 1989	3.6	
	7	10 July 1959	4	
	1 8	12 November 1960	4	
	9	04 August 1972	6	
	10	04 November 2001	6	
	1 The ra large for th	The ratios are based on computations of the annual mean production o ^{f0} Be and ³⁶ Cl by 10 large solar proton events between 1956 and 2005 (ref. 35). The ratios calculated in this study for the AD 774/5 and 993/4 events are also included. The table is sorted by ascending ratios.		
	10	1	2 3	
	10		10	
		E	nergy (MeV)	

- We know how much 10Be has increased to due the SPE of Jan. 2005 (Webber et al. 2007)
- We then simply scale up the fluence spectrum of SPE05 to explain the ¹⁰Be increase measured for the AD 775 event
- We accordingly find a F₃₀ of 2.82 ± 0.25 x 10¹⁰ protons/cm² ! (1.02 ± 0.21 x 10¹⁰ protons/cm² for the AD 993/4 event)

Data set

۲

Thanks // Kiitos

Results I

The AD 775 SPE(s) was larger than anything ever measured so far!

- The ¹⁰Be, ¹⁴C, and ³⁶Cl peaks are in full agreement with SPEs as the cause of the AD 774/5 and 993/4 events
- Using ³⁶Cl/¹⁰Be ratios, we can estimate a probable spectral hardness for the events
- The SPE(s) of AD 774/5 and 993/4 had a very hard energy spectrum
- Based on the induced production of ¹⁰Be and ¹⁴C, we estimate a possible fluence > 30 MeV in the order of 2 x 10¹⁰ protons/cm²
 - This would make the AD 775 event stronger than any SPE measured during the instrumental era

