Solar Extreme Events

Hugh Hudson
UC Berkeley and U Of Glasgow

1) Nature of solar irradiance variability
2) The quandary of the “superflare” stars
3) The tree-ring evidence

4) Assessment

The emphasis in this talk is on the astrophysics,
rather than geoeffectiveness



Solar Irradiance Variations

Table 1 Identified variability mechanisms for solar total irradiance

Mechanism Time scale Amplitude Reference

Oscillations 5 min Few ppm Woodard & Hudson 1983
Granulation Tens of min Tens of ppm Hudson & Woodard 1983
Sunspots Few days <0.2% peak-to-peak Willson et al. 1981
Faculae Tens of days <0.1% peak-to-peak Willson et al. 1981
Rotation 27 days Variable Frohlich 1984

Active Network 11 yr ~(0.1% peak-to-peak Foukal & Lean 1988

Hudson, 1988
Plus (to be up-to-date):

Flares Few min Few hundred ppm  Woods et al. 2004
Secular Cycle 150 ppm Froehlich 2009
‘Flicker’ Tens of min Tens of ppm Bastien et al. 2013

(Harvey 1985)



Sunspot TSI dips
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Sunspot “dips” last for about % rotation
and often have facular “shoulders”



Spots and faculae

« Sunspots are darker than their faculae are
bright, especially early in their life.

* An individual dip lasts for about 4 rotation, since
the projected spot area is foreshortened.

 Facular excesses persist, and may dominate at
the limb passages.



Flares in the TSI
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* Note the clear association with the impulsive
phase (cf. Kretzschmar, 2011): flare radiation is
Inherently nonthermal.



Flares in the TSI
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Solar mini-superflares

* Only two really credible TSI events thus far,
In a time series of about 1/3 century.

* The TSI signatures closely match the
Impulsive phase: white-light flare, hard X-
rays etc.

* Uncertainty in relation to Kepler superflare
energy estimates.

- Alternative flare paradigms?



Increasing TSI flare sensitivity

* The limit at present comes from the
background variability due to convection and
p-modes.

* Most of this can be compensated and
removed by comparison with images (J.
Harvey idea).

* Lack of high time resolution severely limits

our sensitivity for Sun-as-a-star flare
observations.



Solar-stellar quandary
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« Faculae are important for solar variability, but not for Kepler
‘superflare” stellar quiescent variations

* There are toy models to explain this, but a lot of unknowns
get glossed over



Solar-stellar quandary

* The Sun has short-term weak chaotic variability,

* These Kepler stars have nearly sinusoidal variations,
with flares.

These light curves could not be more different;
where’s the paradigm?



The Kepler “superflares”

JAXA

 Where are the faculae?
The smooth variations
suggest that their
behavior is very different
from the solar case.

e Stellar modelers tend

to ignore the
methodology developed
for solar TSI.



A Pole-on View — no dips?
HD 12545

4800 K

4475 K

An RS CVn star with a huge “spot”: APOD 2003-11-02



The case of Kepler-438b
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KIC00649146 is an M dwarf with planets and
superflares. There is no evidence for solar-like
“dips” in its lightcurve. The detection of planets
suggests that we see this star in its equatorial




The Kepler “superflares”
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“Give me a big spot, and
| can give you a big
flare.”




Radiodendrochronology

Nagoya graduate student

Fusa Miyake

Some Sugi (cedar), perhaps

at Yakushima, Japan
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Liu et al. 2014
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The problem of the power law:
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Why is a break required?

* The power-law index is so flat (<2) that
the total energy would diverge without a
break (Collura et al. 1988; Hudson 1991).

 Remark: the index is so flat that
nanoflares may be irrelevant.
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How do we interpret the break?

- The relationship between SEP fluence
and event energy is very complicated:
- Geometry (cf. July 2012 non-event)
- Acceleration physics (saturation)
- CME on/off problem (AR12192)



The breaking news

» Radiosotopic fingerprints from isotope
patterns (Mekhaldi et al. 2015) are

available.
* This fingerprint points towards the Sun as
a cause (particles, rather than photons).

* The key distinction in detectability appears
to be in the SEP spectral distribution.



The fingerprint

Yield function (particles per incident protons)
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The events in red (right panel) are the two SPEs for which
hard spectra occurred in the historical era: SOL1956-02-23
and SOL2005-01-20. These match the tree-ring requirements

for the prehistorical events.




Assessment

Can we predict extreme events? - No

Can we predict extreme events statistically? -
Maybe

Should our prior include (a) superflares on Kepler
stars, or (b) tree rings?- Tree rings

See J. Love, “Credible occurrence probabilities for
extreme geophysical events...” (GRL 2012): the
Bayesian “credibility” intervals are

C.(\\k) = [(VEk — 2/2)%, (Vk + 2/2)Y]




Evaluation

C.(\\k) = [(VEk — 2/2)%, (Vk + 2/2)¥]

* For a Carrington-class event, Love’s formula gives a
68.3% interval of [0.016, 0.137] events per decade.

 He says “The 10-yr recurrence probability for a
Carrington event is somewhere between vanishingly

unlikely and surprisingly likely.”
| think the main point is that the confidence interval has a
width approaching a factor of 10.



Long-term distribution functions
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Extreme events

* The Kepler superflares and the
radiosotope events suggest that more
energetic solar flares might occur.

* The weight of evidence for the tree-ring
radiosotopes now implicates the Sun.

 To locate the break for solar flares, we
need TSI observations at higher time
resolution.



