

Hemispheric Asymmetry of Solar Cycle Activities

Kanya Kusano and Daishi Syukuya

Institute for Space-Earth Environmental Research, Nagoya University, Japan

Outlook

Introduction

- What is the hemispheric asymmetry of solar cycle? Why should we study it?
- Review of previous studies
 - Observations and Simulations
- [Our study] A simple dynamo model of hemispheric asymmetry
 - Numerical Model
 - Results
- Discussion and summary

"Butterfly" is almost symmetric.

Magnetic field on the solar surface

Hemispheric Asymmetry

Phase of solar (sunspot) cycles

The parity tends to be persistent. (the period of 4+4 cycle?)

Long-term evolution of N-S symmetry

The north-south asymmetry exhibits a long-term persistence, and it should not be regarded as a stochastic phenomenon.

Polar Filed Reversal

 The polar field reversals have been at different times in the different hemispheres.
 Babcock & Babcock 1955, Babcock 1959, Babcock 1961

latitude

 The asymmetric polar field reversals are simply a consequence of the asymmetry of sunspot activity.

Svalgaad & Kamide 2013

Strong Asymmetry in Maunder Min.

Sokoloff and Nesme-Ribes (1994)

Strong asymmetry b/w north and south hemisphere might be observed during the Maunder minimum.

Other Asymmetric Features

- Mursula, Hiltula, Zieger 2002
 - Asymmetry of solar wind and heliospheric current sheets could be related to a persistent N-S asymmetry of solar dynamo.
- Feng, Deng, Xu 2013
 - Asymmetry of the flare index between the N-S hemispheres is about 6-7 months, which is near the time delay between flare activity and sunspot activity.
- Gopalswamy et al. 2012
 - Asymmetric behavior is revealed by microwave observations

10

What is the cause of asymmetry?

Dynamo

The most of flux transport dynamo models just assumed the hemispheric symmetry.

Dikpati & Charbonneau 1999 Babcock-Leighton Flux Transport Dynamo

Effects of Asymmetric Flow

Belucz & Dikpati 2013

- Asymmetric meridional circulation
- 2D flux transport model
 The asymmetry in meridional circulation produces differing cycles in the N-S hemispheres.

3D MHD Simulation

- Passos & Charbonneau 2014
- Norton, Charbonneau & Passos 2014

The N-S asymmetry is spontaneously generated, but the lag of cycle phase seems to execute a form of random walk rather than the trend of long-term persistence.

What is the cause of asymmetry?

Objective of our study: To find the minimal model to explain the N-S asymmetry of solar cycle.

Simulation model

- Algorithm: Same as SURYA code (Chatterjee, Nandy, and Choudhuri 2004).
- Geometry: 2D (axisymmetric) full spherical shell.
- Dynamo model: αΩ-dynamo with differential rotation and meridional circulation, those are symmetric with respect to equator.
- Magnetic buoyancy effect:
 - Toroidal field exceeding a critical value is made to erupt to the surface layers.

V_{poloida}

Parity of Dynamo

Ref. Jennings & Weiss (1991) Nishikawa and Kusano (2008)

$$B^{s}_{\phi}(\theta) \equiv \left[B_{\phi}(\theta) + B_{\phi}(\pi - \theta)\right] / 2$$
$$B^{a}_{\phi}(\theta) \equiv \left[B_{\phi}(\theta) - B_{\phi}(\pi - \theta)\right] / 2$$

Equations

Result

Result

The cyclic oscillation of polar magnetic field

- Both the dipole and quadrupole-type fields oscillates with the same period corresponding to the double solar cycle.
- The phase difference b/w the two components spontaneously shifts to 90° and then is persistent.

Solar Cycle for $\Delta \psi = 90^{\circ}$

19

Dependency on the Initial Phase

Regardless of the initial condition, the phase difference Δψ always falls into 90° or -90°
 They correspond to two attractors.

Properties of the Two Attractors

The attractor for
$$\Delta \psi = 90^{\circ}$$

Sunspot in the north is more active in the early phase and the polar field in the north is first reversed.

The attractor for $\Delta \psi = -90^{\circ}$

Sunspot in the south is more active in the early phase and the polar field in the south is first reversed.

Asymmetry in polar field intensity

The squashed factor of attracter causes the difference of polar field max intensity between the north and south pole 987_1_rel_sor_det*

Dependency of attractors on R_M

quadrupole

Jennings & Weiss 1991

Why attracters for $\Delta \psi = \pm 90^{\circ}$

Mechanism of attractors

Summary

- The flux transport dynamo model well explains the asymmetric reversal of polar field as well as the lag of solar cycle between the N-S hemisphere, even if the flow is symmetric.
- There are two attractors in which the dipole and quadurapole field coexist and the phases are shifted (+ or -) 90 degrees.
- It means that the asymmetry of spherical dynamo can be inherently generated.
- However, the simple flux transport model cannot reproduce the transition b/w the different attracters, which corresponds to the switch of different hemispheric parity (NS Z SN).