Coronal magnetic field model 0000000

・ロト ・ 同ト ・ ヨト ・ ヨト ・ りゃぐ

N-S asymmetry of the solar magnetic field from polar jets

Giuseppe Nisticò¹

G. Zimbardo², S. Patsourakos³, V. Bothmer⁴, V. M. Nakariakov¹

¹ CFSA, University of Warwick, Coventry, UK

² University of Calabria, Italy

³ University of Ioannina, Greece

⁴ University of Goettingen, Germany

* e-mail: g.nistico@warwick.ac.uk

Space Climate 6, 5th April 2015, Levi, Lapland, Finland

Coronal magnetic field model 0000000

Conclusions 00

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

Coronal Hole Jets

Identification of 79 jets during the period 2007–2008 in the EUVI and COR1 field of view (Nisticò et al. 2009, 2011).

Coronal magnetic field model

Conclusions 00

Investigation of the jet motion

We determined the position angle (PA) for the 79 polar jets measured in the EUVI FOV (1 R_{\odot}) and the corresponding position in the COR1 FOV (2 R_{\odot}) (Nisticò et al. 2015).

LINFITEX

Coronal magnetic field model

Conclusions 00

Linear fit at the North and South Pole

 2.25 ± 0.04

 1.78 ± 0.04

◆□> ◆□> ◆豆> ◆豆> □豆 →

 1.61 ± 0.09

26%

Coronal magnetic field model 0000000 Conclusions 00

3D position analysis

Coronal magnetic field model 0000000 Conclusions 00

Fitting of latitudes and longitudes

	a_N	a_S	$(a_N - a_S)/a_S$	$(a_N/a_S)^2$
Latitude				
LINFIT	1.77 ± 0.36	1.45 ± 0.24	22%	1.49 ± 0.78
LINFITEX	2.31 ± 0.06	1.62 ± 0.04	43%	2.04 ± 0.15
Longitude				
LINFIT	1.11 ± 0.07	1.00 ± 0.02	-	-
LINFITEX	1.04 ± 0.01	0.98 ± 0.01	-	-

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Coronal magnetic field model 0000000 Conclusions 00

Indication of North-South Asymmetry

- sunspot area, field strength (Hoekesema, 1995), latitudinal gradients of energetic particle fluxes (Simpson et al. 1996, Heber et al. 1996)
- magnetic field measurements by Ulysses (Erdos&Balogh, 1998, 2010)

	B_S (nT)	B_N (nT)
Cycle 22	3.41	3.05
Cycle 23	2.61	2.16
	B_S/B_N	Offset (deg)
Cycle 22	$\frac{B_S/B_N}{1.12}$	Offset (deg) 3.249

Coronal magnetic field model 0000000

Conclusions 00

N-S asymmetry can be due to a quadrupole component in the magnetic field (Bravo-Esparza et al. 2000, Mursula&Hiltula, 2004)

Questions:

- How much is the quadrupole moment ?
- What is the corresponding southward shift of the H. C. S. ?

◆□▶ ◆□▶ ◆□▶ ◆□▶ = □ ● ● ●

Coronal magnetic field model •000000 Conclusions 00

Multipole expansion of the solar magnetic field

Current free approximation \rightarrow Potential field (Altschuler & Newkirk 1969)

$$\Phi(r,\theta,\phi) = R_{\odot} \sum_{l=1}^{N} \sum_{m=0}^{l} f_l(r) P_l^m(\cos\theta) \left(g_l^m \cos\left(m\phi\right) + h_l^m \sin\left(m\phi\right)\right)$$

$$f_l(r) = \frac{\left(\frac{r_w}{r}\right)^{l+1} - \left(\frac{r_w}{r}\right)^l}{\left(\frac{r_w}{R_{\odot}}\right)^{l+1} - \left(\frac{r_w}{R_{\odot}}\right)^l}$$

Magnetic field components:

$$B_r(r,\theta,\phi) = -\frac{\partial\Phi}{\partial r} \quad B_\theta(r,\theta,\phi) = -\frac{1}{r}\frac{\partial\Phi}{\partial\theta} \quad B_\phi(r,\theta,\phi) = -\frac{1}{r\sin\theta}\frac{\partial\Phi}{\partial\phi}$$

Simplified model We restricted to the case $m = 0 \rightarrow$ axisymmetric magnetic field. We considered l = 1, 2, 3, respectively the dipole, quadrupole and esapole moment.

$$\sigma(\hat{g}_2, \hat{g}_3) = \sqrt{\frac{\sum_{n=1}^{N} \left[\theta_n^{COR1} Mod(\hat{g}_2, \hat{g}_3) - \theta_n^{COR1} Obs\right]^2}{N-1}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Coronal magnetic field model 0000000

Conclusions 00

Standard deviation maps

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Coronal magnetic field model 0000000

Conclusions 00

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

Magnetic field structure

Coronal magnetic field model 0000000

Conclusions 00

Polar magnetic fluxes

$$\Phi_N(\mathbf{B}) = \Phi_S(\mathbf{B})$$

$$A_N < B_N >= A_S < B_S >$$

$$\frac{B_S}{B_N} = \frac{A_N}{A_S}$$

Area for a spherical cap

$$A = 2\pi r^{2} (1 - \cos(a\theta))$$

$$\cos(a\theta) \approx 1 - 1/2(a\theta)^{2}$$

$$A \approx \pi r^{2} (a\theta)^{2}$$

$$\frac{\langle B_{S} \rangle}{\langle B_{N} \rangle} = \left(\frac{a_{N}}{a_{S}}\right)^{2}$$

N-S asymmetry estimates

 $B_S/B_N \sim 1.50 - 2.0$

イロト イポト イヨト イヨト 三日

Coronal magnetic field model 0000000

Conclusions 00

Another proxy ...

www.nasa.gov/mission_pages/sdo/news/first-light-3rd.html

Coronal magnetic field model 0000000

Conclusions 00

Another proxy ...

www.nasa.gov/mission_pages/sdo/news/first-light-3rd.html

Summary

- Analysis of the variation in the position angle (PA) for jets in the EUVI (1 R_{\odot}) and COR1 (2 R_{\odot});
- systematic displacements of jets to low latitudes; this magnetic deflection is different for the North and South pole;
- The PA variation is an indipendent indication of solar magnetic field asymmetry
- Values of $g_2^0 = -0.5g_1^0$ and $g_3^0 = 1.6g_1^0$ create an asymmetric solar magnetic field with a southward shift of the current sheet at the source surface of 10 deg, and the value of $B_S/B_N \sim (1.50, 2.00)$ is close to that estimated from Erdos & Balogh 2010.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Thanks for your attention!