SPACE CLIMATE 6

Reconstruction method for sunspot positions from observations of Honoré Flaurergues in the end of 18th century

> Egor Illarionov Rainer Arlt

In a search of sunspots during the Dalton Minimum

Wolf: more than 2050 observations of solar disk in the period 1788–1830 allow to connect series of Staudacher and Schwabe and contain the best material about the Dalton Minimum

• 1755–1835(0?), Viviers, France

• Very little is known, however, his life spanned the most momentous period in the political history of France

- Many publications of great merit on physics, astronomy, archeology, history and medicine. Obtained several Academic awards
- Arranged a small observatory in Viviers, refused a position of Director of observatory in Toulon
- Concentrated on comet hunting, observation of sunspots, solar and lunar eclipses, planets, occultations
- First discovered the Great Comet of 1811

• No detailed information about the procedure

• Generally observations are a combination of transitional times of solar disk and sunspots through a set of wires situated towards movement direction of the Sun

• We distinguish at least two ways of positioning of the wires

- Some spots are labeled by letters
- Repeated observations within one day
- Several textual comments are difficult to interpret

le bord du 🕑 al horiz	6:59:43
le bord du 🕑 au vert	7:00:10
a tacke H al horiz	7:02:17
a tacke H au vert	7:02:32
le bord du 🖸 al horiz	7:02:34
le bord du 🛈 au vert	7:03:51

le	bord	du (o al	horiz	6:59:43
le	bord	du 🤇) ar	ı vert	7:00:10
a	tache	H a	l hor	iz	7:02:17
a	tache	H a	u vei	t	7:02:32
le	bord	du 🤇	o al	horiz	7:02:34
le	bord	du (o al	vert	7:03:51

Coordinates on the disk are extracted unambiguously:

$$\begin{aligned} x &= \frac{bv_2 - sv}{bv_2 - bv_1} \\ y &= \frac{bh_2 - sh}{bh_2 - bh_1} \end{aligned}$$

We calculate P and B angles to obtain heliographic coordinates of sunspot

Sunspot with label G was measured twice on 19 July 1796 and once on the next day:

Sunspot with label E was measured four times on 13 July 1796, however, reconstruction of original notes do not give the same positions on the disk

	1	2	3	4
$b \odot v$	6:12:01	6:17:14	6:22:16	6:27:38
$b \odot h$	6:12:31	6:17:44	6:23:09	6:27:50
t E v	6:14:16	6:19:36	6:24:32	6:28:52
t E h	6:14:52	6:19:59	6:25:11	6:29:13
$b \odot v$	6:15:19	6:20:22	6:25:34	6:30:54
$b \odot h$	6:15:37	6:21:01	6:26:15	6:30:59

Sunspot with label E was measured four times on 13 July 1796, however, reconstruction of original notes does not give the same positions on the disk

	1	2, 2'	3	4, 4'
$\mathbf{b} \odot \mathbf{v}$	6:12:01	6:17:44	6:22:16	6:27:38
$b \odot h$	6:12:31	6:17:14	6:23:09	6:27:50
t E v	6:14:16	$6:19:59_{+}$	6:24:32	6:29:52 (+1)
t E h	6:14:52	$6:19:36 \downarrow$	6:25:11	6:30:13 (+1
$b \odot v$	6:15:19	6:21:01	6:25:34	6:30:54
$b \odot h$	6:15:37	6:20:22↓	6:26:15	6:30:59

We assumed natural mistakes in notes and after their corrections the sunspots are close again!

Sunspot B is mentioned twice with a difference in 5 days, but only a series of corrections allows to make coordinates agree

	1, 1'	2	3, 3'
$b \odot v$	9:19:28 🔺	9:24:43	9:31:23(+1)
b 💿 h	9:19:14 +	9:24:11	9:31:03
t A v		9:25:18	9:31:56 $(+1)^{\downarrow}$
t A h		9:25:01	9:31:55
t B h	9:21:39(+1)	9:26:34	$9:33:29\ (+1)$
t B \mathbf{v}	9:22:08(+1)	9:27:21	9:33:59(+1)
b 💿 h	::	9:27:21	9:34:16 _
$b \odot v$	9:22:50 +	9:28:02	: +
		4	5
le bord	du ⊙ al horiz	7:12:06	7:18:19
le bord	du ⊙ au vert	7:12:21	7:18:31
a tache	B alhoriz	7:13:01	7:19:13
a tache	B au vert	7:13:43	7:19:56
le bord	du ⊙ al horiz	7:15:04	7:21:13
le bord	du ⊙ al vert	7:15:58	7:22:13

Measures of sunspot H are less accurate, but still reliable

	1	2, 2'	3, 3'
le bord du ⊙ al horiz	6:59:43	7:06:27 $+$	7:10:4
le bord du ⊙ au vert	7:00:10	7:05:34 +	7:10:2
a tache H al horiz	7:02:17	7:09:03(+1)	7:13:19
a tache H au vert	7:02:32	7:07:50	7:12:3
le bord du ⊙ al horiz	7:02:34	:: _*	7:13:3
le bord du \odot al vert	7:03:51	$7:09:09(+1)$ \downarrow	7:13:5

			4	5
le bo	rd du ⊙	al vert	7:56:22	8:02:34
le bo	rd du ⊙	au horiz	7:57:00	8:03:43
a tac	he H al	vert	7:57:32	8:03:40
a tac	he H au	horiz	7:57:57	8:03:47
le bo	rd du ⊙	al horiz	7:59:48	8:05:35
le bo	rd du ⊙	al vert	8:00:07	8:06:10

Overview of sunspot distribution

10/14

le bord du ⊙ al horiare 12:39:5813:01:58le grande tache al oblique 12:40:22la grande tache al horiare 12:41:21le bord du ⊙ al horiare 12:42:09le grande tache al oblique 12:42:22

Expressions became more complicated and orientation of wires is essential:

S

13:02:07

13:04:30

Ν

Let d be equal to $bh_2 - bh_1$, then

$$\begin{aligned} x &= \frac{1}{2} \left(\frac{bh_2 - sh}{d} + 1 - \frac{sh - bh_1}{d} \right) \\ y &= 1 - \frac{1}{2} \left(\frac{so_1 - sh}{d} + \frac{sh - so_2}{d} \right) \end{aligned}$$

We obtained similar coordinates for sunspot measured twice: relative to N and relative to S orientation of wires

Some measures are incomplete for reconstruction

le	bord	du	\odot	h	11:51:10	13:19:25
ta	che h				11:53:12	13:21:18
le	bord	du	\odot	h	11:53:27	13:21:42

Differential rotation can be exploited to localize position

 $\Omega(B) = 14.551 - 2.87 \sin^2 B - 0.986.$

Series of such observations will remove the ambiguity

We observe some deviations from g/s numbers given in Wolf's table

уууу	mm	dd	time	L_0	B_0	CMD	Long	Lat	g/s	Wolf g/s
1795	02	12	11:40	215.0	-6.8	10.8	225.8	10.7	1 1	2 -
1795	03	04	12:50	311.0	-7.2	-17.1 -31.2	$293.9 \\ 279.8$	-7.8 1.4	$2\ 2$	25
1795	07	05	9:25	336.5	3.7	$52.7 \\ -51.7$	$\begin{array}{c} 29.2 \\ 284.8 \end{array}$	-5.7 6.3	$2\ 2$	$2\ 3$
1796	07	11	7:15	258.3	4.3	26.8 -48.9 -52.6	$285.1 \\ 209.4 \\ 205.7$	$5.7 \\ 13.3 \\ 13.4$	$2\ 3$	$2\ 3$
1796	07	13	6:20	232.3	4.5	-39.2	193.1	0.5	11	11
1796	07	16	7:25	192.1	4.8	-5.0	187.1	11.7	11	$1 \ 5$
1796	07	19	7:45	152.2	5.0	3.3	155.5	12.9	11	$1 \ 2$
1796	07	20	7:30	139.1	5.1	17.5	156.6	11.5	11	11
1796	07	24	7:05	86.4	5.5	-53.4	33.0	-5.9	11	11
1796	07	30	8:00	6.5	5.9	-25.8 -4.6	$\begin{array}{c} 32.3\\ 1.9 \end{array}$	-6.9 -5.2	$2\ 2$	$2\ 2$
1796	09	02	7:55	277.2	7.2	-54.7 -54.3 -45.5 -51.7	$\begin{array}{r} 222.5 \\ 222.9 \\ 231.7 \\ 225.5 \end{array}$	$11.0 \\ 13.7 \\ -13.2 \\ 14.7$	34	27
1796	11	13	12:05	45.1	2.6	7.1	52.2	5.9	11	19
1798	12	20	15:05	0.7	-2.0	3.3	4.0	7.7	11	11
1798	12	21	14:55	347.7	-2.1	17.6	5.3	4.6	11	1 1

- We suppose to understand a way sunspots were measured
- Excellent accuracy of observations was achieved with simple method
- Most of disagreements in positions can be explained by natural mistakes during making notes
- Incomplete observations are not hopeless for reconstruction
- Further investigation of Flaugergues archive can be done in a systematic way

- We suppose to understand a way sunspots were measured
- Excellent accuracy of observations was achieved with simple method
- Most of disagreements in positions can be explained by natural mistakes during making notes
- Incomplete observations are not hopeless for reconstruction
- Further investigation of Flaugergues archive can be done in a systematic way

Thank you for your attention!