The Hallstatt, Eddy, and de Vries Cycles in Solar Activity in the Recent and Distant Past.

> K.G.McCracken and J. Beer jellore@hinet.net.au

THE SEQUENCE OF GRAND MINIMA-950-2000 AD

ANOTHER SEQUENCE OF GRAND MINIMA- AND >1000 YR LONG INTERVALS BETWEEN

QUESTION

ARE THE GRAND MINIMA THAT WE SEE IN THE TIME DOMAIN OCCURRING AT RANDOM, OR IS THERE SOME UNDERLYING PERIODICITY ????

TO INVESTIGATE THIS, CONVERT TO THE FREQUENCY DOMAIN.

Gleissberg (1958, 1965), Sonett (1984), Stuiver (Many), Peristykh and Damon (2003); Snowball et al (2007), Knudsen et al (2009), and many others.

De Vries 208 +/- 2.4y Eddy 976 +/- 53 y Hallstatt 2310 +/- 300 y

Figure 7 The Fourier scan for the interval $10\,000-700$ BP for periods from 50-350 years. This scan was generated using a 1500-year time window with a 100-year step from one Fourier spectrum to the next. The periods (y-axis) are given in years. Time (x-axis) is BP. See note in text regarding the Spörer, Maunder, and Dalton Minima.

THE PAST 50,000 YEARS

- McCracken et al (2014)9.4kBP10Be & 14C2089762310standard deviation(2.4)(53)(300)
- Castagnoli et al(1998) 2.6-0kBP Thermo- 207 not measured luminescence.
- Usoskin et al (2006) 0.2-0 kBP ⁴⁴Ti

Wagner et al (2001) 25kBP-50kBp ¹⁰Be 205 ~980 ~2000

Deep Sea Temperatures Biological 208 ~800 ~2300

Horiuchi et al (2015) 170-200kBP ¹⁰Be ice/sed. ~ 1700

Conquoin et al (2014) 325-336kBP 208 not significant ¹⁰Be 980 and 2300 not investigated

 Kern et al (2012)
 11.6 MBP various
 209***
 ~950
 ~1700

 Shell Oil
 208

MIOCENE 11.6 Million years ago.

HOLOCENE

10,000-0BP

Kern et al, (2012) Palaeogeography, Palaeoclimatology,... 229, 124-136

CONCLUSIONS

(1)The thermo-luminescence and meteoritic data indicate that the variations in the cosmic radiation at Earth are not due to terrestrial factors. They are of solar origin.

- (2) The de Vries, Eddy, and Hallstatt periodicities appear to have extended back at least 50,000 y into the most recent glacial epoch.
- (3) Furthermore, it appears possible that the de Vries, Eddy, and Hallstatt (and other) periodicities were present 11 Million years ago.
- (4) This would imply a quite remarkable long-term periodic influence on the solar dynamo.

(5) It is worth looking at the geological and deep sea data.

2001/03/29 09:36 UT