CONNECTING THE SOLAR DYNAMO

BELOW THE SURFACE WITH EJECTION OF TWISTED MAGNETIC FIELDS ABOVE THE SURFACE

JÖRN WARNECKE

MAX Planck Institute FOR SOLAR SYSTEM RESEARCH

AXEL BRANDENBURG, CU BOULDER \& NORDITA PETRI J. KÄPYLÄ, AALTO UNIVERSITY MAARIT J. KÄPYLÄ, AALTO UNIVERSITY

Helicity

The glue to connect them all.

Helicity in the Sun

Helicity in the Sun

Nonalignment of rotation and gravity

Helicity in the Sun

Nonalignment of rotation and gravity \downarrow Kinetic helicity

Helicity in the Sun

Nonalignment of rotation and gravity \downarrow

Kinetic helicity \downarrow
Alpha-effect

Helicity in the Sun

Nonalignment of rotation and gravity \downarrow
Kinetic helicity

Alpha-effect \downarrow
Magnetic helicity + catastr. quenching

Helicity in the Sun

Nonalignment of rotation and gravity \downarrow
Kinetic helicity

Alpha-effect \downarrow
Magnetic helicity + catastr. quenching \downarrow
Space weather

Alpha effect

Alpha effect

4th of April 2016
Space Climate 6, Levi, Finland

Turbulent pumping

Turbulent pumping

Dynamo is quenched at high magnetic Reynolds numbers

Dynamo is quenched at high magnetic Reynolds numbers

Magnetic helicity fluxes can prevent dynamo action of being quenched.
(Brandenburg et al. 2009, Blackman and Field 2000, Brandenburg and Sandin 2004).

Dynamo is quenched at high magnetic Reynolds numbers

Magnetic helicity fluxes can prevent dynamo action of being quenched.
(Brandenburg et al. 2009, Blackman and Field 2000, Brandenburg and Sandin 2004).

Coronal mass ejections might be one possibility to transport magnetic helicity out.
(Blackman and Brandenburg 2003, Thompson et al. 2012)

Dynamo is quenched at high magnetic Reynolds numbers

Magnetic helicity fluxes can prevent dynamo action of being quenched.
(Brandenburg et al. 2009, Blackman and Field 2000, Brandenburg and Sandin 2004).

Coronal mass ejections might be one possibility to transport magnetic helicity out.
(Blackman and Brandenburg 2003, Thompson et al. 2012)

A realistic boundary condition for the magnetic field is important.

The Two Layer Model

Lower layer:
Convection zone
Dynamo action
\therefore Generation of magnetic field
Upper layer:
Simplified coronal model
Magnetic flux emerges from the lower layer and gets ejected.

Both layers are in one simulation.

CME-like Ejections

Current helicity density

- proxy for magmetic helicity
- gauge invarriant - represent helicall structures
- can be measured on the Sum

CME-like Ejections

Current helicity demsity

CME-like Ejections

CME-like Ejections

2002/12/02 19:26
2005 $72 \backslash 027.5: 56$

Current helicity density

CME-like Ejections

2000/02/27 07:42 2000\05\5〕 07:45

Warnecke et al. 2011
(A\&A 594, All $)$

Ejections in Cartesian forced turbulence

Ejections in Cartesian forced turbulence

Ejections in Cartesian forced turbulence

color coded:
$<\mathrm{B}_{\mathrm{x}}>_{\mathrm{x}}$

Ejections in Cartesian forced turbulence

Ejections in Cartesian forced turbulence

Self-consistent convection with a coronal layer

Convection driven Ejections

Convection driven Ejections

Convection driven Ejections

Corona supports dynamo action

Corona supports dynamo action

Warnecke et all., 2014 LAU proceeding

Coronal model driven by emerging flux simulation

flux-emergence simulation

from / similar to Cheung et al (2010) ApJ 720, 233

- flux rope rises from bottom and breaks through surface
\rightarrow pair of sunspots

coronal simulation

- use photospheric layer (T, ρ, v, B) as time-dependent lower boundary
\rightarrow magnetic field expands
\rightarrow coronal loops form

Coronal model driven by emerging flux simulation

- loops form at different places at different times
- loop footpoints are in sunspot periphery (penumbra)

synthesized coronal emission ($1.510^{6} \mathrm{~K}$)

view from top: $B_{\text {vert }} @$ bottom + AIA $193 \AA$

view from side: AIA $193 \AA$

34 min out of 10 hrs
in places
(penumbra)

Coronal model driven by emerging flux simulation

- loops form at different places at different times
- loop footpoints are in sunspot periphery (penumbra)

synthesized coronal emission ($1.510^{6} \mathrm{~K}$)

view from top: $B_{\text {vert }} @$ bottom + AIA $193 \AA$

view from side: AIA $193 \AA$

34 min out of 10 hrs
in places
(penumbra)

Helical currents in coronal loops

Rotation Activity Relation

Rotation Activity Relation

Rotation Activity Relation

$\nabla \Omega=$ const

$\alpha=\frac{\tau_{\mathrm{c}}}{3}\left(-\overline{\boldsymbol{\omega} \cdot \boldsymbol{u}}+\frac{\overline{\boldsymbol{j} \cdot \boldsymbol{b}}}{\bar{\rho}}\right)$
Pouquet et al. 1976

Rotation Activity Relation

Rotation Activity Relation

Rotation Activity Relation

Conclusions

Conclusions

- Helicity is important to study the alpha effect.

Conclusions

- Helicity is important to study the alpha effect. - Cyclic as well as random variations.

Conclusions

- Helicity is important to study the alpha effect.
- Cyclic as well as random variations.
- Helical dynamos can produce ejection of current helicity self-consistently.

Conclusions

- Helicity is important to study the alpha effect.
- Cyclic as well as random variations.
- Helical dynamos can produce ejection of current helicity self-consistently.
- Simplified corona and ejections supports dynamo action.

Conclusions

- Helicity is important to study the alpha effect.
- Cyclic as well as random variations.
- Helical dynamos can produce ejection of current helicity self-consistently.
- Simplified corona and ejections supports dynamo action.
- Helicity important for coronal heating.

Conclusions

- Helicity is important to study the alpha effect.
- Cyclic as well as random variations.
- Helical dynamos can produce ejection of current helicity self-consistently.
- Simplified corona and ejections supports dynamo action.
- Helicity important for coronal heating.
- Rotation might lead to enhanced activity due to helicity.

