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unstable eigensolutions, and perform a reliability check of statis-
tical (quasi-) stationarity. ãµλ, b̃µλr and b̃µλθ in the non-covariant
relation

Eµ = ãµλBλ + b̃µλr
∂Bλ

∂r
+ b̃µλθ

∂Bλ

∂θ
, λ = r, θ, φ. (6)

The (covariant) coefficient tensors in Eq. (4) are then obtained
from the non-covariant ones employing the relations (18) of
Schrinner et al. (2007). Note that their sign conventions for α
and γ are different from ours.

4. Results

In Sections 4.1–4.4 we focus on the analysis of the time-
averaged transport coefficients while in Sections 4.5 and 4.6 we
investigate their magnetic quenching and cyclic variation due to
the mean magnetic field. In Section 4.7 we discuss the mean
magnetic field propagation by applying a similar technique as
in Warnecke et al. (2014). Finally, in Section 4.8 we compare
the results from the test-field method with results obtained from
the multidimensional regression method used by Brandenburg &
Sokoloff (2002) and later by e.g., Racine et al. (2011) and Au-
gustson et al. (2015).

4.1. Meridional profiles of α

In Fig. 1 we plot the time averages of all components of α. All
three diagonal components of α are mainly positive in the north
and negative in the south, but have a sign reversal in the lower
layers of the convection zone (except αrr). This behavior is sim-
ilar to that of α for isotropic and homogeneous turbulence in the
low-dissipation limit (Pouquet et al. 1976) via

α = −
τ

3

(

ω′ · u′ − j′ · b′/ρ
)

≡ αK + αM, (7)

where αK is the kinetic and αM the magnetic α coefficient, ω′ =
∇ × u′ is the fluctuating vorticity, resulting in the small-scale
kinetic helicity ω′ · u′, j′ = ∇ × b′/µ0 is the fluctuating current
density resulting in the small-scale current helicity j′ · b′ and ρ is
the mean density. For a direct comparison we plot the meridional
distribution of αK and αM in Fig. 1 as well as the latitudinal
profiles of the diagonal components of α together with those of
αK and αK+αM at three different depths in Fig. 2.

It turns out that αrr is the strongest of all components of α, in
particular in concentrations near the surface at low latitudes, see
Figs. 1 and 2. The same has been found previously for Carte-
sian shear flows using both multidimensional regression meth-
ods (Brandenburg & Sokoloff 2002; Kowal et al. 2006) as well
as the test-field method (Brandenburg 2005b). Unfortunately, a
comparison with Käpylä et al. (2009), where transport coeffi-
cients for convection in a Cartesian box have been obtained by
the test-field method, is not possible as αrr was not determined
there. In the middle of the convection zone, αrr is much weaker
than above and below; but compared to the other components of
α the values are still high or similar (αφφ). The latitudinal depen-
dency shows a steep decrease from low to high latitudes.

Next, αθθ is around six and two times weaker than αrr and
αφφ, respectively, and shows multiple sign reversals on cylin-
drical contours, see Fig. 1. A region of negative (positive) αθθ
at mid-latitudes in the northern (southern) hemisphere coin-
cides with a local minimum of the rotation rate Ω(r, θ) = Ω0 +

⟨Uφ⟩t/r sin θ as seen in Fig. 1 and a maximum of negative radial

Fig. 1. Components of α and αK,M normalized by α0 = u′rms/3 and nor-
malized differential rotationΩ/Ω0; all quantities are time averaged. Nu-
merals at the bottom right at each panel: overall parity P̃, see Eq. (8).

and latitudinal shear (∂rΩ < 0, ∂θΩ < 0), see bottom row of
Fig. 3.

Further, αφφ shows concentrations at low and mid to high lat-
itudes near the surface, but also in deeper layers, where its sign
is opposite to that near the surface. This sign reversal with depth
is most pronounced in αφφ, but also visible in αθθ. The merid-
ional profile of αφφ is roughly similar to that of αK, although its
strength is smaller, see Figs. 1 and 2. The latitudinal dependen-
cies of αφφ and αK do neither follow a typical cosine distribution
as found by, e.g., Käpylä et al. (2006a) for moderate rotation nor
a sin θ cos θ distribution as often assumed in Babcock-Leighton
dynamo models (e.g. Dikpati & Charbonneau 1999). In Käpylä
et al. (2009), an increase of the diagonal coefficients of α from
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ABSTRACT
We present results from four convectively-driven dynamo simulations in spherical wedge geometry. All of

these simulations produce cyclic and migrating mean magnetic fields. The migration direction can be explained
by an αΩ dynamo wave following the Parker–Yoshimura rule. We conclude, that the equatorward migration
in this and previous work is due to a positive (negative) α-effect in the northern (southern) hemisphere and
a negative radial gradient of Ω outside the inner tangent cylinder of these models. This idea is supported
by a strong correlation between negative radial shear and toroidal field strength in the region of equatorward
propagation.
Subject headings: convection – dynamo – magnetohydrodynamics (MHD) – Sun: activity – Sun: rotation –

turbulence

1. INTRODUCTION

Just over 50 years after the paper by Maunder (1904), in
which he showed for the first time the equatorward migra-
tion (EM) of sunspot activity in a time-latitude (or butterfly)
diagram, Parker (1955) proposed a possible solution: migra-
tion of dynamo waves along lines of constant angular veloc-
ity Ω (Yoshimura 1975). Here, α is related to kinetic helic-
ity and is positive (negative) in the northern (southern) hemi-
sphere (Steenbeck et al. 1966). It also has contributions from
the magnetic field through the current helicity (Pouquet et al.
1976). To explain EM, ∇Ω must point in the negative radial
direction. However, application to the Sun became problem-
atic with the advent of helioseismology showing that ∇rΩ is
actually positive at low latitudes where sunspots occur (Schou
et al. 1998), implying poleward migration; with the excep-
tion of the near-surface region, where ∇rΩ is indeed negative
(Thompson et al. 1996). An alternative solution was offered
by Choudhuri et al. (1995), who found that in αΩ dynamo
models with spatially separated induction layers the direc-
tion of migration can also be controlled by the direction of
meridional circulation at the bottom of the convection zone,
where the observed poleward flow at the surface must lead
to an equatorward return flow. Finally, even with just uni-
form rotation, i.e., in an α2 dynamo as opposed to the afore-
mentioned αΩ dynamos, it may be possible to obtain EM due
to the fact that α changes sign at the equator (Baryshnikova
& Shukurov 1987; Rädler & Bräuer 1987; Mitra et al. 2010;
Warnecke et al. 2011).

Meanwhile, global dynamo simulations driven by rotating
convection in spherical shells have demonstrated not only the
production of large-scale magnetic fields, but in some cases
also EM (Käpylä et al. 2012, 2013; Warnecke et al. 2013b;
Augustson et al. 2013). Although this seemed to be a suc-
cess in reproducing Maunder’s observation of EM, the reason
remained unclear. Noting the agreement between their sim-
ulation and the α2 dynamo of Mitra et al. (2010) in terms of
the π/2 phase shift between poloidal and toroidal fields near
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the surface, as well as their similar amplitudes, Käpylä et al.
(2013) suggested such an α2 dynamo as a possible underlying
mechanism. Yet another possibility is that α can change sign
if the second term in the estimate for α (Pouquet et al. 1976),

α =
τc
3

(

−ω · u+
j · b

ρ

)

, (1)

becomes dominant near the surface, where the mean density
ρ becomes small. Here, ω = ∇ × u is the vorticity, u is the
small-scale velocity, j = ∇×b is the current density, b is the
small-scale magnetic field, µ0 is the vacuum permeability, τc
is the correlation time of the turbulence, and overbars denote
suitable averaging. However, an earlier examination by War-
necke et al. (2013a) showed that the data do not support this
idea, i.e., the contribution from the second term is not large
enough. This was surprising, because it was always clear that
the EM in their models occurred only later in the nonlinear
regime when the magnetic field had reached saturation.

Another potentially important difference between the mod-
els of Käpylä et al. (2012, 2013) and those of other groups
(Ghizaru et al. 2010; Racine et al. 2011; Brown et al. 2011;
Augustson et al. 2012, 2013; Nelson et al. 2013) is the use
of a black-body condition for the entropy and a radial mag-
netic field at the outer radial boundary. The latter seems to be
realistic compared to the solar surface (ref:Robert).

It should be noted that the near-surface negative shear layer
of the Sun was either not resolved in the simulations of Käpylä
et al. (2012, 2013), or, in the case of Warnecke et al. (2013b),
such a layer did not coincide with the location of EM. Instead,
most of these simulations show a strong tendency for the con-
tours of angular velocity to be constant on cylinders. Some
of them even show a local minimum of angular velocity at
mid-latitudes. In this Letter, we argue that it is this local min-
imum, where ∇rΩ < 0 and α > 0, which explains the EM
as a Parker dynamo wave traveling from mid-latitudes equa-
torward. While we do not expect this to apply to Maunder’s
observed EM in the Sun, it does clarify the outstanding ques-
tion regarding the origin of EM in the simulations. A clear
understanding of these numerical experiments is a prerequi-
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unstable eigensolutions, and perform a reliability check of statis-
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∂Bλ
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∂Bλ
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, λ = r, θ, φ. (6)

The (covariant) coefficient tensors in Eq. (4) are then obtained
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and γ are different from ours.

4. Results
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ω′ · u′ − j′ · b′/ρ
)

≡ αK + αM, (7)
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∇ × u′ is the fluctuating vorticity, resulting in the small-scale
kinetic helicity ω′ · u′, j′ = ∇ × b′/µ0 is the fluctuating current
density resulting in the small-scale current helicity j′ · b′ and ρ is
the mean density. For a direct comparison we plot the meridional
distribution of αK and αM in Fig. 1 as well as the latitudinal
profiles of the diagonal components of α together with those of
αK and αK+αM at three different depths in Fig. 2.

It turns out that αrr is the strongest of all components of α, in
particular in concentrations near the surface at low latitudes, see
Figs. 1 and 2. The same has been found previously for Carte-
sian shear flows using both multidimensional regression meth-
ods (Brandenburg & Sokoloff 2002; Kowal et al. 2006) as well
as the test-field method (Brandenburg 2005b). Unfortunately, a
comparison with Käpylä et al. (2009), where transport coeffi-
cients for convection in a Cartesian box have been obtained by
the test-field method, is not possible as αrr was not determined
there. In the middle of the convection zone, αrr is much weaker
than above and below; but compared to the other components of
α the values are still high or similar (αφφ). The latitudinal depen-
dency shows a steep decrease from low to high latitudes.

Next, αθθ is around six and two times weaker than αrr and
αφφ, respectively, and shows multiple sign reversals on cylin-
drical contours, see Fig. 1. A region of negative (positive) αθθ
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cides with a local minimum of the rotation rate Ω(r, θ) = Ω0 +
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Further, αφφ shows concentrations at low and mid to high lat-
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ional profile of αφφ is roughly similar to that of αK, although its
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diagram, Parker (1955) proposed a possible solution: migra-
tion of dynamo waves along lines of constant angular veloc-
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1976). To explain EM, ∇Ω must point in the negative radial
direction. However, application to the Sun became problem-
atic with the advent of helioseismology showing that ∇rΩ is
actually positive at low latitudes where sunspots occur (Schou
et al. 1998), implying poleward migration; with the excep-
tion of the near-surface region, where ∇rΩ is indeed negative
(Thompson et al. 1996). An alternative solution was offered
by Choudhuri et al. (1995), who found that in αΩ dynamo
models with spatially separated induction layers the direc-
tion of migration can also be controlled by the direction of
meridional circulation at the bottom of the convection zone,
where the observed poleward flow at the surface must lead
to an equatorward return flow. Finally, even with just uni-
form rotation, i.e., in an α2 dynamo as opposed to the afore-
mentioned αΩ dynamos, it may be possible to obtain EM due
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Meanwhile, global dynamo simulations driven by rotating
convection in spherical shells have demonstrated not only the
production of large-scale magnetic fields, but in some cases
also EM (Käpylä et al. 2012, 2013; Warnecke et al. 2013b;
Augustson et al. 2013). Although this seemed to be a suc-
cess in reproducing Maunder’s observation of EM, the reason
remained unclear. Noting the agreement between their sim-
ulation and the α2 dynamo of Mitra et al. (2010) in terms of
the π/2 phase shift between poloidal and toroidal fields near
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α =
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ρ
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becomes dominant near the surface, where the mean density
ρ becomes small. Here, ω = ∇ × u is the vorticity, u is the
small-scale velocity, j = ∇×b is the current density, b is the
small-scale magnetic field, µ0 is the vacuum permeability, τc
is the correlation time of the turbulence, and overbars denote
suitable averaging. However, an earlier examination by War-
necke et al. (2013a) showed that the data do not support this
idea, i.e., the contribution from the second term is not large
enough. This was surprising, because it was always clear that
the EM in their models occurred only later in the nonlinear
regime when the magnetic field had reached saturation.
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els of Käpylä et al. (2012, 2013) and those of other groups
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of a black-body condition for the entropy and a radial mag-
netic field at the outer radial boundary. The latter seems to be
realistic compared to the solar surface (ref:Robert).

It should be noted that the near-surface negative shear layer
of the Sun was either not resolved in the simulations of Käpylä
et al. (2012, 2013), or, in the case of Warnecke et al. (2013b),
such a layer did not coincide with the location of EM. Instead,
most of these simulations show a strong tendency for the con-
tours of angular velocity to be constant on cylinders. Some
of them even show a local minimum of angular velocity at
mid-latitudes. In this Letter, we argue that it is this local min-
imum, where ∇rΩ < 0 and α > 0, which explains the EM
as a Parker dynamo wave traveling from mid-latitudes equa-
torward. While we do not expect this to apply to Maunder’s
observed EM in the Sun, it does clarify the outstanding ques-
tion regarding the origin of EM in the simulations. A clear
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Warnecke et al.: Turbulent transport coefficients of solar-like stars

Fig. 12. Average cycle dependency of selected transport coefficients. Mean azimuthal and radial magnetic field, Bφ,r (top), together with the
temporal variation of the diagonal components of α along with γ (left) as well as the diagonal components of β along with δ (right) near the
surface (r = 0.98 R) on θ-t plane. The data is obtained from a typical cycle, see Section 4.2. The coefficients are symmetrized according to their
theoretical parity for a perfectly equatorially symmetric flow. The color scales are normalized to highlight the patterns.
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Warnecke et al.: Turbulent transport coefficients

Fig. 5. Radial and latitudinal shear plotted together with difference of
the MHD and HD for αrr and αφφ, radial and latitudinal shear as well
as the rms strength poloidal and toroidal magnetic field. The red line at
high latitudes in ∆αφφ indicates the region under investigation in Fig-
ure 6.

Fig. 6. 2D histogram of αφφ over the energy of the magnetic field com-
ponents, illustrating the effect of magnetic field on transport coeffi-
cients. The region under investigation is at 65◦ latitudes and spans in
radius from r = 0.85 R to r = 0.95 R, as indicated in Figure 5. The
red lines indicate the mean value (the median is nearly identical), the
blue and red lines show the range of time averaged values of αφφ for the
MHD and hydro run, respectively.

4.6. Cyclic variation

The transport coefficients can be divided into a time-averaged
part and a time varying part, such as for α

α = ⟨α⟩t + α
v. (18)

Article number, page 11 of 17page.17
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Fig. 9. Time-averaged components of β and δ for Run I. All values are
normalized by ηt0 = τu

′ 2
rms/3.

In Figure 12, we plot:

αV
ii =

√

⟨αv 2
ii ⟩t, (19)

γV
i =

√

⟨γv 2
i ⟩t, (20)

βV
ii =

√

⟨βv 2
ii ⟩t, (21)

δVi =

√

⟨δv 2
i ⟩t. (22)

4.7. Magnetic field propagation

ξmig(r, θ) = −αêφ × ∇Ω, (23)

where êφ is the unit vector in the φ-direction.

Fig. 12. Latitudinal distribution of the temporal variation of diagonal
components of transport coefficients: αV

ii , γ
V
i , βV

ii and δV
i . for Run I for

r = 0.98 R (solid lines) and r = 0.84 R (dashed lines).

4.8. Comparison with SVD

Note the much smaller spatial structures in Figure 15 than in
Figure 1.

5. Conclusion
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Fig. 9. Time-averaged components of β and δ for Run I. All values are
normalized by ηt0 = τu

′ 2
rms/3.

In Figure 12, we plot:

αV
ii =

√

⟨αv 2
ii ⟩t, (19)

γV
i =

√

⟨γv 2
i ⟩t, (20)

βV
ii =

√

⟨βv 2
ii ⟩t, (21)

δVi =

√

⟨δv 2
i ⟩t. (22)

4.7. Magnetic field propagation

ξmig(r, θ) = −αêφ × ∇Ω, (23)

where êφ is the unit vector in the φ-direction.

Fig. 12. Latitudinal distribution of the temporal variation of diagonal
components of transport coefficients: αV

ii , γ
V
i , βV

ii and δV
i . for Run I for

r = 0.98 R (solid lines) and r = 0.84 R (dashed lines).

4.8. Comparison with SVD

Note the much smaller spatial structures in Figure 15 than in
Figure 1.
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Fig. 13. Latitudinal distribution of rms variations of transport coeffi-
cients αV

ii , γ
V
i , βV

ii and δV
i at r = 0.98 R (solid) and r = 0.84 R (dashed).

the terms generating it is predominately via the variation of the
transport coefficients.

4.7. Magnetic field propagation

As discussed in Warnecke et al. (2014), the occurrence of the
equatorward propagating magnetic field found in Käpylä et al.
(2012) can be well explained by the Parker-Yoshimura rule
(Parker 1955; Yoshimura 1975) using αK + αM as the relevant
scalar α. Having now all transport coefficients at hand allows
us to investigate why the Parker-Yoshimura rule provides such a
good description. For the rule to be applicable, the Ω effect must
be dominant over the toroidal α effect, and the poloidal α effect
must be expressible with a single (possibly position-dependent)
scalar by ∇ × αBφêφ. To show this, we focus on the mid-latitude
region where the shear is negative, causing the generation of
equatorward migrating toroidal field Btor. There, as discussed
in Section 4.2, the radial Ω effect dominates the generation of
the toroidal field. So the radial component is the important part
of the poloidal field in the dynamo wave. We therefore plot in
Fig. 14(a) the main contributions to the radial alpha effect; the
latitudinal alpha effect shows an similar behaviour. As shown
there, the one related to αφφ (red line, Aφ) is indeed dominant
in the region, where the toroidal field and the negative shear is
strong. Consequently, we now use αφφ to determine the equator-
ward propagation direction:

ξmig(r, θ) = −αφφêφ × ∇Ω (12)

Fig. 14. (a) Radial α effect together with radial shear and Btor at r =

0.9 R between 25◦ and 40◦ latitude. Black solid: A =
(

∇ × αi jB j

)

r.
Red: Aφ =

(

∇ × αφφBφêφ
)

r. Purple: Ar =
(

∇ × αφr Br êφ
)

r. Blue: Aθ =
(

∇ × αφθBθêφ
)

r. Black dashed: r sin θ ∂rΩ. Black dotted: Bφ.
(b) and (c): Latitudinal propagation direction ξmig

θ of the mean field as
predicted by the Parker-Yoshimura rule (12), using αφφ (b) and αBS

φφ (c,
see Section 4.8), together with Brms

φ as black contours for 2.5 (solid)
and 3 kG (broken). The color scale is truncated between −1 and 1 to
emphasize the sign of ξmig

θ . The dashed white lines indicate r = 0.9 R.

and find indeed the correct prediction as shown in Fig. 14(b). 7

Using αK + αM instead of αφφ works for this run only by chance
as their signs are the same in the region of interest. However,
in general the Parker-Yoshimura rule using αφφ will not always
work as other components of α may give more important contri-
butions.

4.8. Comparison with multidimensional regression method

In Brandenburg & Sokoloff (2002), a method for determining the
transport coefficients has been used which is based on the tem-
porally varying mean magnetic field of the dynamo (the main
run) alone (called BS method in the following). Instead of solv-
ing additional test problems with predefined mean fields as de-
scribed in Section 3, the method exploits the fact that at differ-
ent times B at a given position has in general different direc-

7 The rule does not exclude dynamo waves propagating along direc-
tions inclined w.r.t the isocontours of Ω. The highest growth rate, how-
ever, occurs for aligned propagation. Note that in the saturated nonlinear
stage a kinematically subdominant mode may nevertheless be prevalent.
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Fig. 5. Top, from left to right: Time-averaged radial and effective radial flow Ur, Ueff
r = Ur + γr, latitudinal and effective latitudinal flow Uθ,

Ueff
θ = Uθ + γθ. Bottom: azimuthal flow Uφ, γφ, effective azimuthal flow Ueff

φ = Uφ + γφ and effective differential rotation Ωeff = Ueff
φ /r sin θ. Solid

lines in top row with arrows: flow lines of U pol, U eff
pol.

that the poloidal and toroidal constituents of B are solenoidal,
thus satisfying the first condition, we consider their evolution
focussing on the terms related to turbulent pumping and mean
velocities

∂t Bpol = ∇ ×
[(

U pol + γpol

)

× Bpol

]

+ . . . (9)

∂t Btor = ∇ ×
[(

U pol + γpol

)

× Btor +
(

U tor + γtor

)

× Bpol

]

+ . . . .

Thus, in the absence of all other effects, both Bpol and Btor are
frozen into (but not advected by) the “effective” mean poloidal
velocity U eff

pol = U pol+γpol, while the toroidal field is in addition

subject to the source term ∇ ×
(

U eff
tor × Bpol

)

, U eff
tor = U tor + γtor,

representing the winding-up of the poloidal field by the si-
multaneous effect of differential rotation and toroidal pumping
(γtor = γφêφ).

In Fig. 5 we show the temporally averaged effective mean
velocities in comparison to U alone. For U eff

pol = Ueff
r êr + Ueff

θ êθ
(upper row), turbulent pumping has a significant impact: at high
(low) latitudes its radial component is dominated by the strong
upward (downward) pumping such that there Ueff

r ≈ 4Ur, while
at the tangent cylinder Ueff

θ ≈ 2Uθ, and the poleward flow in
the upper half of the convection zone is also significantly en-
hanced. Close to the surface the effective velocity has a strong
equatorward component. As a consequence, the whole merid-
ional circulation pattern, as shown by the streamlines in Fig. 5 is
changed: The three meridional flow cells aligned with the rota-
tion vector outside the tangent cylinder are no longer present in
U eff

pol. Note that, while at least ⟨ρu⟩t is solenoidal, no such con-

straint applies to γpol and hence also not for U eff
pol. Near-surface

patches of poloidal flux may in principle be able to reach the bot-
tom of the convection zone when transported by the meridional
circulation U pol, albeit on a rather involved route. However, this
can hardly be accomplished by the effective meridional circula-
tion U eff

pol mainly due to its massive deviations from solenoidal-
ity. Consequently, the flux transport dynamo paradigm seems to
be inconsistent with the presented simulations. Even if helioseis-
mic inversion were to determine accurately the meridional circu-
lation inside the solar convection zone, the effective meridional
velocity would still be unknown, because one cannot measure γ
inside the Sun.

The azimuthal flow Uφ and hence the differential rotation is
only marginally modified by γφ (see Fig. 5, bottom row). How-
ever, at the surface it affects the radial shear significantly, as
shown in Fig. 6, where we plot the radial derivatives of the ro-
tation rate Ω and its effective counterpart Ωeff = Ueff

φ /r sin θ.
At low latitudes, the effective radial derivative becomes negative
whereas at mid latitudes it is weakly enhanced. Note, that sim-
ulations of the type employed here do not produce a negative
radial derivative as found in the Sun (Käpylä et al. 2013; War-
necke et al. 2015a) where near the surface ∂ lnΩ/∂ ln r = −1
(e.g. Barekat et al. 2014) being possibly responsible for the equa-
torward migration of the toroidal field (e.g. Brandenburg 2005a).
Also, at this location the toroidal turbulent pumping can modify
the effective radial shear and thus the magnetic field generation.
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Fig. 5. Top, from left to right: Time-averaged radial and effective radial flow Ur, Ueff
r = Ur + γr, latitudinal and effective latitudinal flow Uθ,

Ueff
θ = Uθ + γθ. Bottom: azimuthal flow Uφ, γφ, effective azimuthal flow Ueff

φ = Uφ + γφ and effective differential rotation Ωeff = Ueff
φ /r sin θ. Solid

lines in top row with arrows: flow lines of U pol, U eff
pol.

that the poloidal and toroidal constituents of B are solenoidal,
thus satisfying the first condition, we consider their evolution
focussing on the terms related to turbulent pumping and mean
velocities

∂t Bpol = ∇ ×
[(

U pol + γpol

)

× Bpol

]

+ . . . (9)

∂t Btor = ∇ ×
[(

U pol + γpol

)

× Btor +
(

U tor + γtor

)

× Bpol

]

+ . . . .

Thus, in the absence of all other effects, both Bpol and Btor are
frozen into (but not advected by) the “effective” mean poloidal
velocity U eff

pol = U pol+γpol, while the toroidal field is in addition

subject to the source term ∇ ×
(

U eff
tor × Bpol

)

, U eff
tor = U tor + γtor,

representing the winding-up of the poloidal field by the si-
multaneous effect of differential rotation and toroidal pumping
(γtor = γφêφ).

In Fig. 5 we show the temporally averaged effective mean
velocities in comparison to U alone. For U eff

pol = Ueff
r êr + Ueff

θ êθ
(upper row), turbulent pumping has a significant impact: at high
(low) latitudes its radial component is dominated by the strong
upward (downward) pumping such that there Ueff

r ≈ 4Ur, while
at the tangent cylinder Ueff

θ ≈ 2Uθ, and the poleward flow in
the upper half of the convection zone is also significantly en-
hanced. Close to the surface the effective velocity has a strong
equatorward component. As a consequence, the whole merid-
ional circulation pattern, as shown by the streamlines in Fig. 5 is
changed: The three meridional flow cells aligned with the rota-
tion vector outside the tangent cylinder are no longer present in
U eff

pol. Note that, while at least ⟨ρu⟩t is solenoidal, no such con-

straint applies to γpol and hence also not for U eff
pol. Near-surface

patches of poloidal flux may in principle be able to reach the bot-
tom of the convection zone when transported by the meridional
circulation U pol, albeit on a rather involved route. However, this
can hardly be accomplished by the effective meridional circula-
tion U eff

pol mainly due to its massive deviations from solenoidal-
ity. Consequently, the flux transport dynamo paradigm seems to
be inconsistent with the presented simulations. Even if helioseis-
mic inversion were to determine accurately the meridional circu-
lation inside the solar convection zone, the effective meridional
velocity would still be unknown, because one cannot measure γ
inside the Sun.

The azimuthal flow Uφ and hence the differential rotation is
only marginally modified by γφ (see Fig. 5, bottom row). How-
ever, at the surface it affects the radial shear significantly, as
shown in Fig. 6, where we plot the radial derivatives of the ro-
tation rate Ω and its effective counterpart Ωeff = Ueff

φ /r sin θ.
At low latitudes, the effective radial derivative becomes negative
whereas at mid latitudes it is weakly enhanced. Note, that sim-
ulations of the type employed here do not produce a negative
radial derivative as found in the Sun (Käpylä et al. 2013; War-
necke et al. 2015a) where near the surface ∂ lnΩ/∂ ln r = −1
(e.g. Barekat et al. 2014) being possibly responsible for the equa-
torward migration of the toroidal field (e.g. Brandenburg 2005a).
Also, at this location the toroidal turbulent pumping can modify
the effective radial shear and thus the magnetic field generation.
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Dynamo is quenched  
at high magnetic Reynolds numbers

Magnetic helicity fluxes can prevent
dynamo action of being quenched.

(Brandenburg et al. 2009, Blackman and Field 2000, Brandenburg and Sandin 2004).

Coronal mass ejections might be one possibility
to transport magnetic helicity out.

(Blackman and Brandenburg 2003, Thompson et al. 2012)

A realistic boundary condition
for the magnetic field is important.
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The Two Layer Model

Lower layer: 
Convection zone 
Dynamo action          
       Generation of  magnetic field

Upper layer: 
Simplified coronal model 
Magnetic flux emerges from the 
lower layer and gets ejected.

Both layers are in one simulation.
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Figure 14. Time series of a coronal ejection zoomed into the region of the ejection near the
equator (θ = π/2). The dashed horizontal lines show the location of the surface at r = R.

Left column: normalized current helicity, µ0RJ ·B/⟨B2⟩t. Middle column: magnetic field,
contours of r sin θAφ are shown together with a color-scale representation of Bφ. The contours

of r sin θAφ correspond to field lines of B in the rθ plane, where solid lines represent clockwise
magnetic field lines and the dashed ones counter-clockwise. Right column: density fluctuations
∆ρ(t) = ρ(t)− ⟨ρ⟩t. For all plots, the color-scale represents negative as dark blue and positive
as light yellow. Taken from Run A5.
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Coronal ejections driven by convective dynamo action

Figure 8. Variation of Uφ in the convection zone at r = 0.8R for Run A5 (left panel) and
Run Ar1 (right panel). Dark blue shades represent negative and light yellow positive values.
The dotted horizontal lines show the location of the equator at θ = π/2. The velocity is
normalized by the mean rms velocity in the convection zone.

Figure 9. Time series of a coronal ejection near the equator (θ = π/2). The normalized current

helicity, µ0RJ ·B/⟨B2⟩t, is shown in a color-scale representation from different times; dark
blue represents negative and light yellow positive values. The dashed horizontal lines show the
location of the surface at r = R. Taken from Run A5.

velocity is also quenched, when the magnetic field is high. Looking at the Bφ

and Br, plotted over time and latitude in Figure 7, the large-scale magnetic field
is similar to Run A5, that is constant in time and does not show any oscillation.
Comparing the two hemispheres, however, the field structure is antisymmetric.
In the Uφ plot in Figure 8, we find just one localized minimum, which coincides
with the low values of urms(t)2/⟨u2

rms⟩t between t/τ = 2100 and 2400.

3.3. Coronal ejections

As seen in Table 1, 19 runs have been performed, which cover a considerable
parameter space. However, only a small fraction of events can be identified with
actual coronal ejections similar to the ones seen in Warnecke and Brandenburg
(2010) and Warnecke et al. (2011). Especially the Runs A5 and Ar1a show some
clear ejection events. There the magnetic field emerges out of the convection zone
and is ejected as an isolated structure. In Figure 9 we have plotted the normalized
current helicity, µ0RJ ·B/⟨B2⟩t, as a time series for Run A5. At small scales,
the current helicity density, J ·B, is a good proxy for magnetic helicity density,
A · B, and is, as opposed to this quantity, gauge invariant. In addition the
current helicity can be an indicator of helical magnetic structures, which are
believed to be present in coronal mass ejections (Plunkett et al., 2000; Régnier

SOLA: sol_paper.tex; 13 December 2011; 14:42; p. 13
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Figure 1. Dependence of magnetic field energy normalized by the equipartition value B2
rm s/B2

eq
with coronal radial extent RC and magnetic Reynolds number ReM . The solid black line indicates
the dynamo region without corona.

Their ratio is expressed by the magnetic Prandtl number PrM = ReM /Re.
As an initial condition we use Gaussian noise as seed magnetic field in the dynamo

region. Our domain is periodic in the azimuthal direction. For the velocity field we
use a stress-free boundary condition on all other boundaries. For the magnetic field we
apply a perfect conductor conditions in both θ boundaries and the lower radial boundary
(r = 0.7R⊙). On the outer radial boundary (r = RC), we employ vertical field conditions.
We use the Pencil Code† with sixth-order centered finite differences in space and a
third-order accurate Runge-Kutta scheme in time; see Mitra et al. (2009) for the extension
of the Pencil Code to spherical coordinates.

3. Dynamo action
We perform 27 runs where we change RC and ReM , but keep PrM constant. The letters

for different sets indicate the coronal extents: RC/R⊙ = 1, 1.5, 2, 3, 1.2, 1.1, and 2.5 for
Sets A–F. In the first four sets, we vary ReM from 1.5 to 220, for the last three sets we
use ReM = 6.

For all runs the turbulent motion in the lower layer of the domain drives dynamo
action, which amplifies the magnetic field. After exponential growth, the field saturates
and shows cycles. The field shows an equatorward migration of the all three magnetic field
components, as described in Warnecke et al. (2011). This is caused by an α2 dynamo,
where α changes sign over the equator (Mitra et al. 2010a). In Figure 1, we show for
all the 27 runs the normalized magnetic field energy B2

rms/B2
eq as function of magnetic

Reynolds number ReM . The value for B2
rms/B2

eq is obtained by averaging in space over
the lower layer of the domain r ! R⊙ and in time over many hundred turnover times
in the saturated stage. The error bars in Figure 1 reflect the quality of the temporal
averaging. From Figure 1, we can deduct two important results. First, for runs with a
corona the magnetic energy peaks at ReM ≈ 20. This seems to be not the case for runs
without a corona. On the other hand, the magnetic energy declines for larger ReM , as
was also found by Käpylä et al. (2010), which could be related to a change in the onset
conditions for the different cases. Second, the magnetic energies for all runs with a coronal
extent are larger by a factor of ≈ 1.5. It seems that the actual radial size of the coronal

† http://pencil-code.googlecode.com
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use a stress-free boundary condition on all other boundaries. For the magnetic field we
apply a perfect conductor conditions in both θ boundaries and the lower radial boundary
(r = 0.7R⊙). On the outer radial boundary (r = RC), we employ vertical field conditions.
We use the Pencil Code† with sixth-order centered finite differences in space and a
third-order accurate Runge-Kutta scheme in time; see Mitra et al. (2009) for the extension
of the Pencil Code to spherical coordinates.
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We perform 27 runs where we change RC and ReM , but keep PrM constant. The letters

for different sets indicate the coronal extents: RC/R⊙ = 1, 1.5, 2, 3, 1.2, 1.1, and 2.5 for
Sets A–F. In the first four sets, we vary ReM from 1.5 to 220, for the last three sets we
use ReM = 6.

For all runs the turbulent motion in the lower layer of the domain drives dynamo
action, which amplifies the magnetic field. After exponential growth, the field saturates
and shows cycles. The field shows an equatorward migration of the all three magnetic field
components, as described in Warnecke et al. (2011). This is caused by an α2 dynamo,
where α changes sign over the equator (Mitra et al. 2010a). In Figure 1, we show for
all the 27 runs the normalized magnetic field energy B2

rms/B2
eq as function of magnetic

Reynolds number ReM . The value for B2
rms/B2

eq is obtained by averaging in space over
the lower layer of the domain r ! R⊙ and in time over many hundred turnover times
in the saturated stage. The error bars in Figure 1 reflect the quality of the temporal
averaging. From Figure 1, we can deduct two important results. First, for runs with a
corona the magnetic energy peaks at ReM ≈ 20. This seems to be not the case for runs
without a corona. On the other hand, the magnetic energy declines for larger ReM , as
was also found by Käpylä et al. (2010), which could be related to a change in the onset
conditions for the different cases. Second, the magnetic energies for all runs with a coronal
extent are larger by a factor of ≈ 1.5. It seems that the actual radial size of the coronal

† http://pencil-code.googlecode.com



4th of  April 2016 Space Climate 6, Levi, Finland 13

Coronal model driven by emerging flux simulation 

C
he

n,
 B

in
ge

rt,
 P

et
er

, C
he

un
g 

(2
01

3)
 

27.2 hr 25.2 hr 23.0 hr 

+3000

B z
  [

G
]

–3000

0

flux-emergence simulation 
from / similar to Cheung et al (2010) ApJ 720, 233 

– flux rope rises from bottom 
   and breaks through surface   

   →  pair of sunspots 

coronal simulation 

–  use photospheric layer  (T, ρ, v, B) 
    as time-dependent lower boundary  

    →  magnetic field expands 
    →  coronal loops form 

146 x 73 Mm2 



4th of  April 2016 Space Climate 6, Levi, Finland

Coronal model driven by emerging flux simulation 
synthesized coronal emission  (1.5 106 K )  

Chen, Bingert, Peter, Cheung (2013)    
1

100

1000

10

+3000

–3000

0

► loops form at different places 
     at different times 
 
 

►  loop footpoints are in 
     sunspot periphery  (penumbra) 

34 min 
out of 10 hrs 

view from top:   Bvert @ bottom  +  AIA 193 Å

view from side:   AIA 193 Å

D
N

 / 
pi

x 
/ s

B z
  [

G
]

146 x 73 Mm2 

14

Coronal model driven by emerging flux simulation 
synthesized coronal emission  (1.5 106 K )  

Chen, Bingert, Peter, Cheung (2013)    
1

100

1000

10

+3000

–3000

0

► loops form at different places 
     at different times 
 
 

►  loop footpoints are in 
     sunspot periphery  (penumbra) 

34 min 
out of 10 hrs 

view from top:   Bvert @ bottom  +  AIA 193 Å

view from side:   AIA 193 Å

D
N

 / 
pi

x 
/ s

B z
  [

G
]

146 x 73 Mm2 

Coronal model driven by emerging flux simulation 
synthesized coronal emission  (1.5 106 K )  

Chen, Bingert, Peter, Cheung (2013)    
1

100

1000

10

+3000

–3000

0

► loops form at different places 
     at different times 
 
 

►  loop footpoints are in 
     sunspot periphery  (penumbra) 

34 min 
out of 10 hrs 

view from top:   Bvert @ bottom  +  AIA 193 Å

view from side:   AIA 193 Å

D
N

 / 
pi

x 
/ s

B z
  [

G
]

146 x 73 Mm2 

Coronal model driven by emerging flux simulation 
synthesized coronal emission  (1.5 106 K )  

Chen, Bingert, Peter, Cheung (2013)    
1

100

1000

10

+3000

–3000

0

► loops form at different places 
     at different times 
 
 

►  loop footpoints are in 
     sunspot periphery  (penumbra) 

34 min 
out of 10 hrs 

view from top:   Bvert @ bottom  +  AIA 193 Å

view from side:   AIA 193 Å

D
N

 / 
pi

x 
/ s

B z
  [

G
]

146 x 73 Mm2 



4th of  April 2016 Space Climate 6, Levi, Finland

Coronal model driven by emerging flux simulation 
synthesized coronal emission  (1.5 106 K )  

Chen, Bingert, Peter, Cheung (2013)    
1

100

1000

10

+3000

–3000

0

► loops form at different places 
     at different times 
 
 

►  loop footpoints are in 
     sunspot periphery  (penumbra) 

34 min 
out of 10 hrs 

view from top:   Bvert @ bottom  +  AIA 193 Å

view from side:   AIA 193 Å

D
N

 / 
pi

x 
/ s

B z
  [

G
]

146 x 73 Mm2 

14

Coronal model driven by emerging flux simulation 
synthesized coronal emission  (1.5 106 K )  

Chen, Bingert, Peter, Cheung (2013)    
1

100

1000

10

+3000

–3000

0

► loops form at different places 
     at different times 
 
 

►  loop footpoints are in 
     sunspot periphery  (penumbra) 

34 min 
out of 10 hrs 

view from top:   Bvert @ bottom  +  AIA 193 Å

view from side:   AIA 193 Å

D
N

 / 
pi

x 
/ s

B z
  [

G
]

146 x 73 Mm2 

Coronal model driven by emerging flux simulation 
synthesized coronal emission  (1.5 106 K )  

Chen, Bingert, Peter, Cheung (2013)    
1

100

1000

10

+3000

–3000

0

► loops form at different places 
     at different times 
 
 

►  loop footpoints are in 
     sunspot periphery  (penumbra) 

34 min 
out of 10 hrs 

view from top:   Bvert @ bottom  +  AIA 193 Å

view from side:   AIA 193 Å

D
N

 / 
pi

x 
/ s

B z
  [

G
]

146 x 73 Mm2 

Coronal model driven by emerging flux simulation 
synthesized coronal emission  (1.5 106 K )  

Chen, Bingert, Peter, Cheung (2013)    
1

100

1000

10

+3000

–3000

0

► loops form at different places 
     at different times 
 
 

►  loop footpoints are in 
     sunspot periphery  (penumbra) 

34 min 
out of 10 hrs 

view from top:   Bvert @ bottom  +  AIA 193 Å

view from side:   AIA 193 Å

D
N

 / 
pi

x 
/ s

B z
  [

G
]

146 x 73 Mm2 



4th of  April 2016 Space Climate 6, Levi, Finland 15

J. Warnecke et al.: Current systems in coronal loops

Fig. 4. 3D rendering of the current and magnetic field lines in top view and side view in the x-direction. The green lines show current lines through
the apex of the magnetic field lines (black lines), the purple and red ones are through points at the middle-left and middle-right of the magnetic
field lines, respectively. In grey scale (white: positive and black: negative) is plotted the vertical magnetic field at a height of z = 2.9 Mm.

along the loop, it mean, that the field cannot be force-free. Why
the magnetic field and current density is parallel on one side of
the loop and antiparallel on the other side of the loop, need fur-
ther investigations. As shown in Figure 2, the field lines and the
emission structure show a strong overlap, therefore the change
of sign of the current density has to be inside the bright loop
structure.

As a next step, we track the field lines of the current density
and show them together with magnetic field lines in a 3D volu-
men rendering in Figure 4. The magnetic field lines are confined
with a small cross section, compare also with Figure 2. The two
footpoints of the field lines do not lie in the center of the mag-
netic active region, they lie a few Mm in the periphery, see also
Figure 9 of and discussion in Chen et al. (2014). The overall
structure of the current density lines is helical, winding around
the magnetic field lines. The red ones, which all originate at the
positive magnetic pole on the right hand side of Figure 4, con-
nect the two magnetic polarities illustrating a continues current
antiparallel to the magnetic field. However, the purple magnetic
field lines, which originate from the negative magnetic pole on
the left hand side, follow the loop to close to the apex and then
change the sign to connect back to same magnetic polarity. These
current lines illustrate, that the current is able to have a differ-
ent sign along the loop. It basically means, that currents in left
leg of the loop are pointing downwards, so parallel to the mag-
netic field, see Figure 3 and then further up changing sign to
become anti-parallel with the magnetic field. Furthermore, the
complex helical structure of the current lines suggest that the
force-freeness of the magnetic field is only partially fulfilled.

The currents are not only anti-parellel to the magnetic field
along the loop as shown in Figure 2, the vertical current is in-
deed positive in and around the two legs of the loop at a height
of z = 5 Mm, see Figure 5(a) and (c) for the corresponding ver-
tical magnetic field. This suggested that the current structure in
the loop is driven from the dynamic in lower corona, and en-
force the sign of current to the loop above. This behavior can
be explained in the following way. As already shown in Chen
et al. (2014, 2015), the magnetic footpoints associated with the
loop are moving into the magnetic poles during the emergence
of the loop. So, the rising of the loop cause an increase in dis-
tance between the two legs of the loop. Furthermore as shown in
Figure 2, the magnetic field lines in the loop possess a non-zero
contribution in the y direction resulting in inclination of the loop.
This inclination of the magnetic field in the legs of loop and their
motions apart from each other results in the negative current see
in the two legs of the loop. This can be shown by calculating the
vertical component of the Electromotive force u × B. As shown
in Figure 5(b) (u× B)z is indeed negative for both legs indicated
by white dots.

3.2. Consequences

The complex current system around the bright loop structure has
consequences for the magnetic field state and the forcing asso-
ciated with the loop. As a first step, we want to investigate how
the magnetic field deviate from a force-free magnetic field. For
this purpose, we extrapolate a potential magnetic field using the
vertical magnetic field from the z = 0 surface. The difference of

Article number, page 3 of 6page.6

Helical currents in coronal loops
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Fig. 9. X-ray to bolometric luminosity ratio vs. empirical Rossby num-
ber for all the stars in our sample. The meaning of the symbols is the
same as in Fig. 3.

It is to be mentioned, however, that the adopted procedure
does not permit to determine absolute values of ⌧e, but only the
functional dependence of such an empirical time scale on the
stellar mass; the function ⌧e must be properly scaled in order to
be compared with other empirical or model-derived convective
turnover times. The value of ⌧e listed in Table 3 for each mass
range was obtained by applying a constant scaling factor such
that the value of ⌧e for solar-mass stars matches the Noyes’s
semi-empirical prediction of the convective turnover time of
the Sun. The relationship between this ⌧e and the stellar mass
has been used to calculate the values of Re plotted in Fig. 9.

In Fig. 10 we show a comparison between the func-
tion ⌧e(M) and the theoretical convective turnover time, ⌧c, de-
rived from two stellar structure models, the model by Kim &
Demarque (1996) and the more recent model by Ventura et al.
(1998). The latter was employed for the computation of the
characteristic turnover time also for stars with M < 0.5 M�, in-
cluding fully-convective stars with M/M� = 0.3 and M/M� =
0.2. Both models give a global estimate of this time scale
by integrating over the whole convective region. For ease of
comparison the function ⌧e(M) in Fig. 10 is scaled in such a
way that our empirical time scale for a solar-mass star coin-
cides with the theoretical convective time predicted by Ventura
et al. (1998). We find that the empirically X-ray-derived func-
tion ⌧e follows ⌧c for stars in the mass range 0.6–1.2; for lower-
mass stars, the empirical timescale is still in agreement with
the model convective time, even if the paucity of stars with
Prot > 10 days makes the comparison particularly critical.

In order to compare our empirical time scale with the val-
ues computed with the Noyes et al. (1984) formula, we have
completed our analysis by deriving ⌧e also as a function of the
B�V color, using the results reported in Sect. 3.3. In Fig. 11 we
have plotted the Noyes function and our empirical ⌧e(B � V),
properly scaled as in Table 3. The two formulations are very
similar for 0.5 < B�V < 1.0, and our data confirm the Noyes’s
prediction also in the B � V range 1.0–1.4, where the Noyes

Fig. 10. Comparison between our empirically-determined ⌧e (aster-
isks), and theoretical predictions by Kim & Demarque (dash-dotted
line) and by Ventura et al. (1998) (dashed line). Horizontal lines cover
the mass ranges considered, while the asterisks are placed at the me-
dian of the masses of the corresponding bin.

Fig. 11. Comparison between empirically-determined ⌧e (asterisks),
scaled L

�1/2
bol (squares), and the Noyes et al. (1984) semi-empirical for-

mulation (thin solid and dashed line).

study was based on the data of 5 stars only (dashed line in
Fig. 11). For B�V > 1.4 we find an indication of increasing ⌧e
as already seen in Fig. 10 for stars with M < 0.5 M�.

4.2. Alternative interpretation of the empirical Rossby
number

In Sect. 3.2 we have already demonstrated that a single power-
law provides a good mass-independent description of the Lx vs.
Prot relationship, for non-saturated stars. Does the Lx/Lbol vs.
Re relationship represent a real improvement?

The scaling:

Lx )
Lx

Lbol
(4)
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Rotation Pizzolato et al. 2003
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4.2. Alternative interpretation of the empirical Rossby
number
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ABSTRACT
We present results from four convectively-driven dynamo simulations in spherical wedge geometry. All of

these simulations produce cyclic and migrating mean magnetic fields. The migration direction can be explained
by an αΩ dynamo wave following the Parker–Yoshimura rule. We conclude, that the equatorward migration
in this and previous work is due to a positive (negative) α-effect in the northern (southern) hemisphere and
a negative radial gradient of Ω outside the inner tangent cylinder of these models. This idea is supported
by a strong correlation between negative radial shear and toroidal field strength in the region of equatorward
propagation.
Subject headings: convection – dynamo – magnetohydrodynamics (MHD) – Sun: activity – Sun: rotation –

turbulence

1. INTRODUCTION

Just over 50 years after the paper by Maunder (1904), in
which he showed for the first time the equatorward migra-
tion (EM) of sunspot activity in a time-latitude (or butterfly)
diagram, Parker (1955) proposed a possible solution: migra-
tion of dynamo waves along lines of constant angular veloc-
ity Ω (Yoshimura 1975). Here, α is related to kinetic helic-
ity and is positive (negative) in the northern (southern) hemi-
sphere (Steenbeck et al. 1966). It also has contributions from
the magnetic field through the current helicity (Pouquet et al.
1976). To explain EM, ∇Ω must point in the negative radial
direction. However, application to the Sun became problem-
atic with the advent of helioseismology showing that ∇rΩ is
actually positive at low latitudes where sunspots occur (Schou
et al. 1998), implying poleward migration; with the excep-
tion of the near-surface region, where ∇rΩ is indeed negative
(Thompson et al. 1996). An alternative solution was offered
by Choudhuri et al. (1995), who found that in αΩ dynamo
models with spatially separated induction layers the direc-
tion of migration can also be controlled by the direction of
meridional circulation at the bottom of the convection zone,
where the observed poleward flow at the surface must lead
to an equatorward return flow. Finally, even with just uni-
form rotation, i.e., in an α2 dynamo as opposed to the afore-
mentioned αΩ dynamos, it may be possible to obtain EM due
to the fact that α changes sign at the equator (Baryshnikova
& Shukurov 1987; Rädler & Bräuer 1987; Mitra et al. 2010;
Warnecke et al. 2011).

Meanwhile, global dynamo simulations driven by rotating
convection in spherical shells have demonstrated not only the
production of large-scale magnetic fields, but in some cases
also EM (Käpylä et al. 2012, 2013; Warnecke et al. 2013b;
Augustson et al. 2013). Although this seemed to be a suc-
cess in reproducing Maunder’s observation of EM, the reason
remained unclear. Noting the agreement between their sim-
ulation and the α2 dynamo of Mitra et al. (2010) in terms of
the π/2 phase shift between poloidal and toroidal fields near

Electronic address: warnecke@mps.mpg.de (Revision: 1.66 )

the surface, as well as their similar amplitudes, Käpylä et al.
(2013) suggested such an α2 dynamo as a possible underlying
mechanism. Yet another possibility is that α can change sign
if the second term in the estimate for α (Pouquet et al. 1976),

α =
τc
3

(

−ω · u+
j · b

ρ

)

, (1)

becomes dominant near the surface, where the mean density
ρ becomes small. Here, ω = ∇ × u is the vorticity, u is the
small-scale velocity, j = ∇×b is the current density, b is the
small-scale magnetic field, µ0 is the vacuum permeability, τc
is the correlation time of the turbulence, and overbars denote
suitable averaging. However, an earlier examination by War-
necke et al. (2013a) showed that the data do not support this
idea, i.e., the contribution from the second term is not large
enough. This was surprising, because it was always clear that
the EM in their models occurred only later in the nonlinear
regime when the magnetic field had reached saturation.

Another potentially important difference between the mod-
els of Käpylä et al. (2012, 2013) and those of other groups
(Ghizaru et al. 2010; Racine et al. 2011; Brown et al. 2011;
Augustson et al. 2012, 2013; Nelson et al. 2013) is the use
of a black-body condition for the entropy and a radial mag-
netic field at the outer radial boundary. The latter seems to be
realistic compared to the solar surface (ref:Robert).

It should be noted that the near-surface negative shear layer
of the Sun was either not resolved in the simulations of Käpylä
et al. (2012, 2013), or, in the case of Warnecke et al. (2013b),
such a layer did not coincide with the location of EM. Instead,
most of these simulations show a strong tendency for the con-
tours of angular velocity to be constant on cylinders. Some
of them even show a local minimum of angular velocity at
mid-latitudes. In this Letter, we argue that it is this local min-
imum, where ∇rΩ < 0 and α > 0, which explains the EM
as a Parker dynamo wave traveling from mid-latitudes equa-
torward. While we do not expect this to apply to Maunder’s
observed EM in the Sun, it does clarify the outstanding ques-
tion regarding the origin of EM in the simulations. A clear
understanding of these numerical experiments is a prerequi-
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Fig. 9. X-ray to bolometric luminosity ratio vs. empirical Rossby num-
ber for all the stars in our sample. The meaning of the symbols is the
same as in Fig. 3.

It is to be mentioned, however, that the adopted procedure
does not permit to determine absolute values of ⌧e, but only the
functional dependence of such an empirical time scale on the
stellar mass; the function ⌧e must be properly scaled in order to
be compared with other empirical or model-derived convective
turnover times. The value of ⌧e listed in Table 3 for each mass
range was obtained by applying a constant scaling factor such
that the value of ⌧e for solar-mass stars matches the Noyes’s
semi-empirical prediction of the convective turnover time of
the Sun. The relationship between this ⌧e and the stellar mass
has been used to calculate the values of Re plotted in Fig. 9.

In Fig. 10 we show a comparison between the func-
tion ⌧e(M) and the theoretical convective turnover time, ⌧c, de-
rived from two stellar structure models, the model by Kim &
Demarque (1996) and the more recent model by Ventura et al.
(1998). The latter was employed for the computation of the
characteristic turnover time also for stars with M < 0.5 M�, in-
cluding fully-convective stars with M/M� = 0.3 and M/M� =
0.2. Both models give a global estimate of this time scale
by integrating over the whole convective region. For ease of
comparison the function ⌧e(M) in Fig. 10 is scaled in such a
way that our empirical time scale for a solar-mass star coin-
cides with the theoretical convective time predicted by Ventura
et al. (1998). We find that the empirically X-ray-derived func-
tion ⌧e follows ⌧c for stars in the mass range 0.6–1.2; for lower-
mass stars, the empirical timescale is still in agreement with
the model convective time, even if the paucity of stars with
Prot > 10 days makes the comparison particularly critical.

In order to compare our empirical time scale with the val-
ues computed with the Noyes et al. (1984) formula, we have
completed our analysis by deriving ⌧e also as a function of the
B�V color, using the results reported in Sect. 3.3. In Fig. 11 we
have plotted the Noyes function and our empirical ⌧e(B � V),
properly scaled as in Table 3. The two formulations are very
similar for 0.5 < B�V < 1.0, and our data confirm the Noyes’s
prediction also in the B � V range 1.0–1.4, where the Noyes

Fig. 10. Comparison between our empirically-determined ⌧e (aster-
isks), and theoretical predictions by Kim & Demarque (dash-dotted
line) and by Ventura et al. (1998) (dashed line). Horizontal lines cover
the mass ranges considered, while the asterisks are placed at the me-
dian of the masses of the corresponding bin.

Fig. 11. Comparison between empirically-determined ⌧e (asterisks),
scaled L

�1/2
bol (squares), and the Noyes et al. (1984) semi-empirical for-

mulation (thin solid and dashed line).

study was based on the data of 5 stars only (dashed line in
Fig. 11). For B�V > 1.4 we find an indication of increasing ⌧e
as already seen in Fig. 10 for stars with M < 0.5 M�.

4.2. Alternative interpretation of the empirical Rossby
number

In Sect. 3.2 we have already demonstrated that a single power-
law provides a good mass-independent description of the Lx vs.
Prot relationship, for non-saturated stars. Does the Lx/Lbol vs.
Re relationship represent a real improvement?
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ABSTRACT
We present results from four convectively-driven dynamo simulations in spherical wedge geometry. All of

these simulations produce cyclic and migrating mean magnetic fields. The migration direction can be explained
by an αΩ dynamo wave following the Parker–Yoshimura rule. We conclude, that the equatorward migration
in this and previous work is due to a positive (negative) α-effect in the northern (southern) hemisphere and
a negative radial gradient of Ω outside the inner tangent cylinder of these models. This idea is supported
by a strong correlation between negative radial shear and toroidal field strength in the region of equatorward
propagation.
Subject headings: convection – dynamo – magnetohydrodynamics (MHD) – Sun: activity – Sun: rotation –

turbulence

1. INTRODUCTION

Just over 50 years after the paper by Maunder (1904), in
which he showed for the first time the equatorward migra-
tion (EM) of sunspot activity in a time-latitude (or butterfly)
diagram, Parker (1955) proposed a possible solution: migra-
tion of dynamo waves along lines of constant angular veloc-
ity Ω (Yoshimura 1975). Here, α is related to kinetic helic-
ity and is positive (negative) in the northern (southern) hemi-
sphere (Steenbeck et al. 1966). It also has contributions from
the magnetic field through the current helicity (Pouquet et al.
1976). To explain EM, ∇Ω must point in the negative radial
direction. However, application to the Sun became problem-
atic with the advent of helioseismology showing that ∇rΩ is
actually positive at low latitudes where sunspots occur (Schou
et al. 1998), implying poleward migration; with the excep-
tion of the near-surface region, where ∇rΩ is indeed negative
(Thompson et al. 1996). An alternative solution was offered
by Choudhuri et al. (1995), who found that in αΩ dynamo
models with spatially separated induction layers the direc-
tion of migration can also be controlled by the direction of
meridional circulation at the bottom of the convection zone,
where the observed poleward flow at the surface must lead
to an equatorward return flow. Finally, even with just uni-
form rotation, i.e., in an α2 dynamo as opposed to the afore-
mentioned αΩ dynamos, it may be possible to obtain EM due
to the fact that α changes sign at the equator (Baryshnikova
& Shukurov 1987; Rädler & Bräuer 1987; Mitra et al. 2010;
Warnecke et al. 2011).

Meanwhile, global dynamo simulations driven by rotating
convection in spherical shells have demonstrated not only the
production of large-scale magnetic fields, but in some cases
also EM (Käpylä et al. 2012, 2013; Warnecke et al. 2013b;
Augustson et al. 2013). Although this seemed to be a suc-
cess in reproducing Maunder’s observation of EM, the reason
remained unclear. Noting the agreement between their sim-
ulation and the α2 dynamo of Mitra et al. (2010) in terms of
the π/2 phase shift between poloidal and toroidal fields near
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the surface, as well as their similar amplitudes, Käpylä et al.
(2013) suggested such an α2 dynamo as a possible underlying
mechanism. Yet another possibility is that α can change sign
if the second term in the estimate for α (Pouquet et al. 1976),

α =
τc
3

(

−ω · u+
j · b

ρ

)

, (1)

becomes dominant near the surface, where the mean density
ρ becomes small. Here, ω = ∇ × u is the vorticity, u is the
small-scale velocity, j = ∇×b is the current density, b is the
small-scale magnetic field, µ0 is the vacuum permeability, τc
is the correlation time of the turbulence, and overbars denote
suitable averaging. However, an earlier examination by War-
necke et al. (2013a) showed that the data do not support this
idea, i.e., the contribution from the second term is not large
enough. This was surprising, because it was always clear that
the EM in their models occurred only later in the nonlinear
regime when the magnetic field had reached saturation.

Another potentially important difference between the mod-
els of Käpylä et al. (2012, 2013) and those of other groups
(Ghizaru et al. 2010; Racine et al. 2011; Brown et al. 2011;
Augustson et al. 2012, 2013; Nelson et al. 2013) is the use
of a black-body condition for the entropy and a radial mag-
netic field at the outer radial boundary. The latter seems to be
realistic compared to the solar surface (ref:Robert).

It should be noted that the near-surface negative shear layer
of the Sun was either not resolved in the simulations of Käpylä
et al. (2012, 2013), or, in the case of Warnecke et al. (2013b),
such a layer did not coincide with the location of EM. Instead,
most of these simulations show a strong tendency for the con-
tours of angular velocity to be constant on cylinders. Some
of them even show a local minimum of angular velocity at
mid-latitudes. In this Letter, we argue that it is this local min-
imum, where ∇rΩ < 0 and α > 0, which explains the EM
as a Parker dynamo wave traveling from mid-latitudes equa-
torward. While we do not expect this to apply to Maunder’s
observed EM in the Sun, it does clarify the outstanding ques-
tion regarding the origin of EM in the simulations. A clear
understanding of these numerical experiments is a prerequi-
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Fig. 9. X-ray to bolometric luminosity ratio vs. empirical Rossby num-
ber for all the stars in our sample. The meaning of the symbols is the
same as in Fig. 3.

It is to be mentioned, however, that the adopted procedure
does not permit to determine absolute values of ⌧e, but only the
functional dependence of such an empirical time scale on the
stellar mass; the function ⌧e must be properly scaled in order to
be compared with other empirical or model-derived convective
turnover times. The value of ⌧e listed in Table 3 for each mass
range was obtained by applying a constant scaling factor such
that the value of ⌧e for solar-mass stars matches the Noyes’s
semi-empirical prediction of the convective turnover time of
the Sun. The relationship between this ⌧e and the stellar mass
has been used to calculate the values of Re plotted in Fig. 9.

In Fig. 10 we show a comparison between the func-
tion ⌧e(M) and the theoretical convective turnover time, ⌧c, de-
rived from two stellar structure models, the model by Kim &
Demarque (1996) and the more recent model by Ventura et al.
(1998). The latter was employed for the computation of the
characteristic turnover time also for stars with M < 0.5 M�, in-
cluding fully-convective stars with M/M� = 0.3 and M/M� =
0.2. Both models give a global estimate of this time scale
by integrating over the whole convective region. For ease of
comparison the function ⌧e(M) in Fig. 10 is scaled in such a
way that our empirical time scale for a solar-mass star coin-
cides with the theoretical convective time predicted by Ventura
et al. (1998). We find that the empirically X-ray-derived func-
tion ⌧e follows ⌧c for stars in the mass range 0.6–1.2; for lower-
mass stars, the empirical timescale is still in agreement with
the model convective time, even if the paucity of stars with
Prot > 10 days makes the comparison particularly critical.

In order to compare our empirical time scale with the val-
ues computed with the Noyes et al. (1984) formula, we have
completed our analysis by deriving ⌧e also as a function of the
B�V color, using the results reported in Sect. 3.3. In Fig. 11 we
have plotted the Noyes function and our empirical ⌧e(B � V),
properly scaled as in Table 3. The two formulations are very
similar for 0.5 < B�V < 1.0, and our data confirm the Noyes’s
prediction also in the B � V range 1.0–1.4, where the Noyes

Fig. 10. Comparison between our empirically-determined ⌧e (aster-
isks), and theoretical predictions by Kim & Demarque (dash-dotted
line) and by Ventura et al. (1998) (dashed line). Horizontal lines cover
the mass ranges considered, while the asterisks are placed at the me-
dian of the masses of the corresponding bin.

Fig. 11. Comparison between empirically-determined ⌧e (asterisks),
scaled L

�1/2
bol (squares), and the Noyes et al. (1984) semi-empirical for-

mulation (thin solid and dashed line).

study was based on the data of 5 stars only (dashed line in
Fig. 11). For B�V > 1.4 we find an indication of increasing ⌧e
as already seen in Fig. 10 for stars with M < 0.5 M�.

4.2. Alternative interpretation of the empirical Rossby
number

In Sect. 3.2 we have already demonstrated that a single power-
law provides a good mass-independent description of the Lx vs.
Prot relationship, for non-saturated stars. Does the Lx/Lbol vs.
Re relationship represent a real improvement?

The scaling:
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these simulations produce cyclic and migrating mean magnetic fields. The migration direction can be explained
by an αΩ dynamo wave following the Parker–Yoshimura rule. We conclude, that the equatorward migration
in this and previous work is due to a positive (negative) α-effect in the northern (southern) hemisphere and
a negative radial gradient of Ω outside the inner tangent cylinder of these models. This idea is supported
by a strong correlation between negative radial shear and toroidal field strength in the region of equatorward
propagation.
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1. INTRODUCTION

Just over 50 years after the paper by Maunder (1904), in
which he showed for the first time the equatorward migra-
tion (EM) of sunspot activity in a time-latitude (or butterfly)
diagram, Parker (1955) proposed a possible solution: migra-
tion of dynamo waves along lines of constant angular veloc-
ity Ω (Yoshimura 1975). Here, α is related to kinetic helic-
ity and is positive (negative) in the northern (southern) hemi-
sphere (Steenbeck et al. 1966). It also has contributions from
the magnetic field through the current helicity (Pouquet et al.
1976). To explain EM, ∇Ω must point in the negative radial
direction. However, application to the Sun became problem-
atic with the advent of helioseismology showing that ∇rΩ is
actually positive at low latitudes where sunspots occur (Schou
et al. 1998), implying poleward migration; with the excep-
tion of the near-surface region, where ∇rΩ is indeed negative
(Thompson et al. 1996). An alternative solution was offered
by Choudhuri et al. (1995), who found that in αΩ dynamo
models with spatially separated induction layers the direc-
tion of migration can also be controlled by the direction of
meridional circulation at the bottom of the convection zone,
where the observed poleward flow at the surface must lead
to an equatorward return flow. Finally, even with just uni-
form rotation, i.e., in an α2 dynamo as opposed to the afore-
mentioned αΩ dynamos, it may be possible to obtain EM due
to the fact that α changes sign at the equator (Baryshnikova
& Shukurov 1987; Rädler & Bräuer 1987; Mitra et al. 2010;
Warnecke et al. 2011).

Meanwhile, global dynamo simulations driven by rotating
convection in spherical shells have demonstrated not only the
production of large-scale magnetic fields, but in some cases
also EM (Käpylä et al. 2012, 2013; Warnecke et al. 2013b;
Augustson et al. 2013). Although this seemed to be a suc-
cess in reproducing Maunder’s observation of EM, the reason
remained unclear. Noting the agreement between their sim-
ulation and the α2 dynamo of Mitra et al. (2010) in terms of
the π/2 phase shift between poloidal and toroidal fields near
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the surface, as well as their similar amplitudes, Käpylä et al.
(2013) suggested such an α2 dynamo as a possible underlying
mechanism. Yet another possibility is that α can change sign
if the second term in the estimate for α (Pouquet et al. 1976),

α =
τc
3

(

−ω · u+
j · b

ρ

)

, (1)

becomes dominant near the surface, where the mean density
ρ becomes small. Here, ω = ∇ × u is the vorticity, u is the
small-scale velocity, j = ∇×b is the current density, b is the
small-scale magnetic field, µ0 is the vacuum permeability, τc
is the correlation time of the turbulence, and overbars denote
suitable averaging. However, an earlier examination by War-
necke et al. (2013a) showed that the data do not support this
idea, i.e., the contribution from the second term is not large
enough. This was surprising, because it was always clear that
the EM in their models occurred only later in the nonlinear
regime when the magnetic field had reached saturation.

Another potentially important difference between the mod-
els of Käpylä et al. (2012, 2013) and those of other groups
(Ghizaru et al. 2010; Racine et al. 2011; Brown et al. 2011;
Augustson et al. 2012, 2013; Nelson et al. 2013) is the use
of a black-body condition for the entropy and a radial mag-
netic field at the outer radial boundary. The latter seems to be
realistic compared to the solar surface (ref:Robert).

It should be noted that the near-surface negative shear layer
of the Sun was either not resolved in the simulations of Käpylä
et al. (2012, 2013), or, in the case of Warnecke et al. (2013b),
such a layer did not coincide with the location of EM. Instead,
most of these simulations show a strong tendency for the con-
tours of angular velocity to be constant on cylinders. Some
of them even show a local minimum of angular velocity at
mid-latitudes. In this Letter, we argue that it is this local min-
imum, where ∇rΩ < 0 and α > 0, which explains the EM
as a Parker dynamo wave traveling from mid-latitudes equa-
torward. While we do not expect this to apply to Maunder’s
observed EM in the Sun, it does clarify the outstanding ques-
tion regarding the origin of EM in the simulations. A clear
understanding of these numerical experiments is a prerequi-

Pouquet et al. 1976

Pizzolato et al. 2003

helicity is  
a pseudo scalar: 

↵ ⇠ ⌦

r⌦ = const



4th of  April 2016 Space Climate 6, Levi, Finland 16

N. Pizzolato et al.: The stellar activity-rotation relationship revisited 155

Fig. 9. X-ray to bolometric luminosity ratio vs. empirical Rossby num-
ber for all the stars in our sample. The meaning of the symbols is the
same as in Fig. 3.

It is to be mentioned, however, that the adopted procedure
does not permit to determine absolute values of ⌧e, but only the
functional dependence of such an empirical time scale on the
stellar mass; the function ⌧e must be properly scaled in order to
be compared with other empirical or model-derived convective
turnover times. The value of ⌧e listed in Table 3 for each mass
range was obtained by applying a constant scaling factor such
that the value of ⌧e for solar-mass stars matches the Noyes’s
semi-empirical prediction of the convective turnover time of
the Sun. The relationship between this ⌧e and the stellar mass
has been used to calculate the values of Re plotted in Fig. 9.

In Fig. 10 we show a comparison between the func-
tion ⌧e(M) and the theoretical convective turnover time, ⌧c, de-
rived from two stellar structure models, the model by Kim &
Demarque (1996) and the more recent model by Ventura et al.
(1998). The latter was employed for the computation of the
characteristic turnover time also for stars with M < 0.5 M�, in-
cluding fully-convective stars with M/M� = 0.3 and M/M� =
0.2. Both models give a global estimate of this time scale
by integrating over the whole convective region. For ease of
comparison the function ⌧e(M) in Fig. 10 is scaled in such a
way that our empirical time scale for a solar-mass star coin-
cides with the theoretical convective time predicted by Ventura
et al. (1998). We find that the empirically X-ray-derived func-
tion ⌧e follows ⌧c for stars in the mass range 0.6–1.2; for lower-
mass stars, the empirical timescale is still in agreement with
the model convective time, even if the paucity of stars with
Prot > 10 days makes the comparison particularly critical.

In order to compare our empirical time scale with the val-
ues computed with the Noyes et al. (1984) formula, we have
completed our analysis by deriving ⌧e also as a function of the
B�V color, using the results reported in Sect. 3.3. In Fig. 11 we
have plotted the Noyes function and our empirical ⌧e(B � V),
properly scaled as in Table 3. The two formulations are very
similar for 0.5 < B�V < 1.0, and our data confirm the Noyes’s
prediction also in the B � V range 1.0–1.4, where the Noyes

Fig. 10. Comparison between our empirically-determined ⌧e (aster-
isks), and theoretical predictions by Kim & Demarque (dash-dotted
line) and by Ventura et al. (1998) (dashed line). Horizontal lines cover
the mass ranges considered, while the asterisks are placed at the me-
dian of the masses of the corresponding bin.

Fig. 11. Comparison between empirically-determined ⌧e (asterisks),
scaled L

�1/2
bol (squares), and the Noyes et al. (1984) semi-empirical for-

mulation (thin solid and dashed line).

study was based on the data of 5 stars only (dashed line in
Fig. 11). For B�V > 1.4 we find an indication of increasing ⌧e
as already seen in Fig. 10 for stars with M < 0.5 M�.

4.2. Alternative interpretation of the empirical Rossby
number

In Sect. 3.2 we have already demonstrated that a single power-
law provides a good mass-independent description of the Lx vs.
Prot relationship, for non-saturated stars. Does the Lx/Lbol vs.
Re relationship represent a real improvement?

The scaling:
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these simulations produce cyclic and migrating mean magnetic fields. The migration direction can be explained
by an αΩ dynamo wave following the Parker–Yoshimura rule. We conclude, that the equatorward migration
in this and previous work is due to a positive (negative) α-effect in the northern (southern) hemisphere and
a negative radial gradient of Ω outside the inner tangent cylinder of these models. This idea is supported
by a strong correlation between negative radial shear and toroidal field strength in the region of equatorward
propagation.
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1. INTRODUCTION

Just over 50 years after the paper by Maunder (1904), in
which he showed for the first time the equatorward migra-
tion (EM) of sunspot activity in a time-latitude (or butterfly)
diagram, Parker (1955) proposed a possible solution: migra-
tion of dynamo waves along lines of constant angular veloc-
ity Ω (Yoshimura 1975). Here, α is related to kinetic helic-
ity and is positive (negative) in the northern (southern) hemi-
sphere (Steenbeck et al. 1966). It also has contributions from
the magnetic field through the current helicity (Pouquet et al.
1976). To explain EM, ∇Ω must point in the negative radial
direction. However, application to the Sun became problem-
atic with the advent of helioseismology showing that ∇rΩ is
actually positive at low latitudes where sunspots occur (Schou
et al. 1998), implying poleward migration; with the excep-
tion of the near-surface region, where ∇rΩ is indeed negative
(Thompson et al. 1996). An alternative solution was offered
by Choudhuri et al. (1995), who found that in αΩ dynamo
models with spatially separated induction layers the direc-
tion of migration can also be controlled by the direction of
meridional circulation at the bottom of the convection zone,
where the observed poleward flow at the surface must lead
to an equatorward return flow. Finally, even with just uni-
form rotation, i.e., in an α2 dynamo as opposed to the afore-
mentioned αΩ dynamos, it may be possible to obtain EM due
to the fact that α changes sign at the equator (Baryshnikova
& Shukurov 1987; Rädler & Bräuer 1987; Mitra et al. 2010;
Warnecke et al. 2011).

Meanwhile, global dynamo simulations driven by rotating
convection in spherical shells have demonstrated not only the
production of large-scale magnetic fields, but in some cases
also EM (Käpylä et al. 2012, 2013; Warnecke et al. 2013b;
Augustson et al. 2013). Although this seemed to be a suc-
cess in reproducing Maunder’s observation of EM, the reason
remained unclear. Noting the agreement between their sim-
ulation and the α2 dynamo of Mitra et al. (2010) in terms of
the π/2 phase shift between poloidal and toroidal fields near
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the surface, as well as their similar amplitudes, Käpylä et al.
(2013) suggested such an α2 dynamo as a possible underlying
mechanism. Yet another possibility is that α can change sign
if the second term in the estimate for α (Pouquet et al. 1976),

α =
τc
3

(

−ω · u+
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ρ

)

, (1)

becomes dominant near the surface, where the mean density
ρ becomes small. Here, ω = ∇ × u is the vorticity, u is the
small-scale velocity, j = ∇×b is the current density, b is the
small-scale magnetic field, µ0 is the vacuum permeability, τc
is the correlation time of the turbulence, and overbars denote
suitable averaging. However, an earlier examination by War-
necke et al. (2013a) showed that the data do not support this
idea, i.e., the contribution from the second term is not large
enough. This was surprising, because it was always clear that
the EM in their models occurred only later in the nonlinear
regime when the magnetic field had reached saturation.

Another potentially important difference between the mod-
els of Käpylä et al. (2012, 2013) and those of other groups
(Ghizaru et al. 2010; Racine et al. 2011; Brown et al. 2011;
Augustson et al. 2012, 2013; Nelson et al. 2013) is the use
of a black-body condition for the entropy and a radial mag-
netic field at the outer radial boundary. The latter seems to be
realistic compared to the solar surface (ref:Robert).

It should be noted that the near-surface negative shear layer
of the Sun was either not resolved in the simulations of Käpylä
et al. (2012, 2013), or, in the case of Warnecke et al. (2013b),
such a layer did not coincide with the location of EM. Instead,
most of these simulations show a strong tendency for the con-
tours of angular velocity to be constant on cylinders. Some
of them even show a local minimum of angular velocity at
mid-latitudes. In this Letter, we argue that it is this local min-
imum, where ∇rΩ < 0 and α > 0, which explains the EM
as a Parker dynamo wave traveling from mid-latitudes equa-
torward. While we do not expect this to apply to Maunder’s
observed EM in the Sun, it does clarify the outstanding ques-
tion regarding the origin of EM in the simulations. A clear
understanding of these numerical experiments is a prerequi-

Pouquet et al. 1976

Pizzolato et al. 2003

helicity is  
a pseudo scalar: 

↵ ⇠ ⌦

r⌦ = const

Act. ⇡ j · b ⇡ ! · u
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Conclusions

•Helicity is important to study the alpha effect.

•Cyclic as well as random variations.

•Helical dynamos can produce ejection of  current helicity 

self-consistently. 

• Simplified corona and ejections supports dynamo action.

•  Helicity important for coronal heating.

• Rotation might lead to enhanced activity due to helicity.


