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A “millenium” solar-like dynamo

OFFINLAND  KiSO

t 2y ky = 1644

-0.301

Global spherical convection dynamo e.g. (Kapyla
et al. 2013, Kapyla et al. 2015)
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Figure: B, averaged azimuthally as function of latitude over time - layers
near the base, middle and surface of the convection zone. Time derived by
50/ Re, for a solar size star rotating 5x solar rate
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‘_model MHD equations

0A
§:UXB—]/£017J, (1)
DIn
Dtp - -Vv.U, (2)
D
Dltj:g—ZﬂoxU+;(J><B—Vp+V-2va), (3)
Ds 1 rad | [ESGS 2 2
Dt:p[-V-(F + F )+y017J]+21/S. (4)
Frad = _KVT and FSGS = —XsGsp TVs (5)

are heat fluxes, radiative and SGS (sub grid scale - numerical
stability)
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A

u

B=V xA
J:ya1VxB
Ho
D/Dt=9/0t+u-V
S

0

v

b

K

XSGS

s
T
p

magnetic vector potential
velocity

magnetic field

current density

vacuum permeability
material derivative

rate of strain tensor
density

kinematic viscosity
magnetic diffusivity
radiative heat conductivity
turbulent heat conductivity
(unresolved convective transport of heat)
specific entropy
temperature

pressure

Ideal gas law: p = (cp — cy)p T, where adiabatic index v = cp/cy = 5/3.



A m long term variation of magnetic cycle
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Figure: <B¢>¢ near surface of the

convection zone during grand minima south
then north.
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Figure: (By),, near base of the convection
zone during grand minima south then north.
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A m long term variation of magnetic cycle
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Figure: Parity (black) and (By),, near
Figure: <B¢,>¢ near surface of the surface (N:blue, S:red) at £25° latitude,

convection zone during grand minima south during high state of base toroidal mode
then north.
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Figure: <B¢>¢ near the surface of the
Figure: <B¢>¢ near base of the convection convection zone during switch from N-S
zone during grand minima south then north. Symmetry to asysmmetry.
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chrinner et al. 2007) expressed the induction equation in
terms of the mean field (e.g. azimuthal average)
suchthatB=B+bandU=U+u

Taking the curl of (1)

d

a—t(§+b) =V x (U+u)x (B+b)+4yV3(B+b), (6)
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chrinner et al. 2007) expressed the induction equation in
terms of the mean field (e.g. azimuthal average)
suchthatB=B+bandU=U+u

Taking the curl of (1)

5 B - _

a7<B+b) =V x (U+u)x (B+b)+1nV3(B+b), (6)
oB — = 2R
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where the electromotive force (EMF) £ = u x b



A m”mean field concept

chrinner et al. 2007) expressed the induction equation in
terms of the mean field (e.g. azimuthal average)
suchthatB=B+bandU=U+u

Taking the curl of (1)

;t(Ber):Vx(U+u)><(B+b)+77V2(B+b)r (6)
oB — = 2R
5 =V x(UxB)+Vx£+yV°B, (7)

where the electromotive force (EMF) £ = u x b

b

a—t—Vx(Uxb)+V><(u><§)—|—V><G—I—17V2b, (8)

where G=uxb—-uxb



. s#% mean field concept

& is a functional of u, U and B, i.e. linear in B
Let us assume that b vanishes for B — 0
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& is a functional of u, U and B, i.e. linear in B
Let us assume that b vanishes for B — 0

Further assume only weakly in space and time
In general, if no higher than first order spatial derivatives and
no time derivatives of B are taken into account then in general

£ =aB+bVB

with second rank a and third rank b tensors
i.e. 36 independent coefficients



s mean field concept

in curvelinear coordinates can be expressed

E=aB+yxB—B-(VxB)—6x(VxB)—x-(VB)¥™ (9)
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in curvelinear coordinates can be expressed
£=aB+vyxB—p:(VxB)—dx(VxB)—x: (VB (9)

Coefficients, vectors  and J, second rank tensors « and g, and third rank
tensor « represent a decomposiiton of the velocity field and can be related to
physical processes, helping us to understand the structure of the dynamo.

Assuming axisymmetry in spherical geometry, then reduce to
27 independent coefficients



A s mean field concept

OFFINLAND  RiSOLVE

in curvelinear coordinates can be expressed
£=aB+vyxB—p:(VxB)—dx(VxB)—x: (VB (9)

Coefficients, vectors  and J, second rank tensors « and g, and third rank
tensor « represent a decomposiiton of the velocity field and can be related to
physical processes, helping us to understand the structure of the dynamo.

Assuming axisymmetry in spherical geometry, then reduce to
27 independent coefficients

How might we determine these coefficients?
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Assume EQ. pertains to a steady test field B
ob — . _
g—Vx(Uxb)—VxG—iyV b=V x(uxBr) (10)

For any given test field E(Ti) the EMF, depending only on U and
u, can be expressed
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Applying these to 9 linearly independent axisymmetric test
fields we can solve simultaneously for the 27 independent
coefficients



4 s mean field concept

sapEmy

Assume EQ. pertains to a steady test field B
ob — . _
g—Vx(Uxb)—VxG—iyV b=V x(uxBr) (10)

For any given test field E(Ti)

u, can be expressed

the EMF, depending only on U and
0 _ = gl BB( ) ~ 1 aﬁ(i)
&V = ayBy, + b/kr o L+ bﬁ@;w (11)
Applying these to 9 linearly independent axisymmetric test

fields we can solve simultaneously for the 27 independent
coefficients

How plausible is the mean field model?
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So, assuming we have the coefficients and can analyse what
role the various processes play in the dynamo.

Is it meaningful?
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‘verification of mean field model

So, assuming we have the coefficients and can analyse what
role the various processes play in the dynamo.

Is it meaningful?

It depends on the extent to which the EMF satisfies the
assumptions

How does the mean field dynamo compare with the full
solution?
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Figure: (Schrinner et al. 2007) magnetoconvection: azimuthally averaged
magnetic field components resulting from DNS (upper), mean-field
calculations derived from test field (lower). [(pugnQ)'/?]
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M. Schrinner, K.-H. Rddler, D. Schmift, M. Rheinhardt and U R. Christensen

Max: 266 Mac: Li6 Max: 234
Min : 4,08 i Min: 216 Min : 080

Mac: 2od Max: LE7
Min : -2 Min 059

Figure: (Schrinner et al. 2007) electromotive forces in the
magnetoconvection (top) EMHD, gMHD, é'gIHD, and (bottom) EMF, EMF, Sg’“:.

[(7/D)(puon) /2]
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(n#)=(0.74,0.73): smoothing time = 0.75 yr
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Figure: Upper: a,(0.74R, 0.73rad), box-car averaged over 9 month
intervals (blue), standard deviation over interval (error bars). Lower:
Perturbations a7, _ box-car averaged over 9 months



A time averaged a-tensor steady cyclic B
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Figure: Time and azimuthally averaged a-tensor for the period
corresponding to steady cyclic epoch
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Figure: Time evolution of azimuthally averaged a-tensor spanning steady
cyclic epoch near the base of the convection zone
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Figure: Time evolution of azimuthally averaged a-tensor spanning steady
cyclic epoch near the surface of the convection zone
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summary remarks

wr strongest tensor component - 5x

a up to 10x stronger than other tensors
but we require curl of contraction with B?

time averaged tensors robust profiles - little cyclic
behaviour - consistent between epochs

grand minima radial tensor components tend to be slightly
weaker - latitudinal components slightly stronger

mean field alone unlikely to recover full dynamo solution
fluctuations about 10x mean values - but follow mean
magnitude?

mean field model may work with simple random
fluctuations?
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