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”millenium” solar-like dynamo

Global spherical convection dynamo e.g. (Käpylä
et al. 2013, Käpylä et al. 2015)
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”millenium” solar-like dynamo

Figure: Bφ averaged azimuthally as function of latitude over time - layers
near the base, middle and surface of the convection zone. Time derived by
5Ω�/R�, for a solar size star rotating 5x solar rate



model MHD equations
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F rad = −K∇T and F SGS = −χSGSρT∇s (5)

are heat fluxes, radiative and SGS (sub grid scale - numerical
stability)
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model MHD equations - symbols

A magnetic vector potential
U velocity
B = ∇×A magnetic field
J = µ−1

0 ∇×B current density
µ0 vacuum permeability
D/Dt = ∂/∂t + u ·∇ material derivative
S rate of strain tensor
ρ density
ν kinematic viscosity
η magnetic diffusivity
K radiative heat conductivity
χSGS turbulent heat conductivity

(unresolved convective transport of heat)
s specific entropy
T temperature
p pressure

Ideal gas law: p = (cP − cV)ρT , where adiabatic index γ = cP/cV = 5/3.



long term variation of magnetic cycle
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symmetry to asysmmetry.



long term variation of magnetic cycle

Figure:
〈
Bφ
〉

φ
near surface of the

convection zone during grand minima south
then north.

Figure:
〈
Bφ
〉

φ
near base of the convection

zone during grand minima south then north.

Figure: Parity (black) and
〈
Bφ
〉

φ
near

surface (N:blue, S:red) at ±25◦ latitude,
during high state of base toroidal mode

Figure:
〈
Bφ
〉

φ
near the surface of the

convection zone during switch from N-S
symmetry to asysmmetry.



mean field concept

(Schrinner et al. 2007) expressed the induction equation in
terms of the mean field (e.g. azimuthal average)
such that B = B + b and U = U + u
Taking the curl of (1)

∂

∂t
(B + b) = ∇× (U + u)× (B + b) + η∇2(B + b), (6)

∂B
∂t

= ∇× (U ×B) +∇× E + η∇2B, (7)

where the electromotive force (EMF) E = u × b

∂b
∂t

= ∇× (U × b) +∇× (u ×B) +∇×G + η∇2b, (8)

where G = u × b− u × b
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mean field concept

E is a functional of u, U and B, i.e. linear in B
Let us assume that b vanishes for B̄ → 0

Further assume only weakly in space and time
In general, if no higher than first order spatial derivatives and
no time derivatives of B are taken into account then in general

E = aB + b∇B

with second rank a and third rank b tensors
i.e. 36 independent coefficients
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mean field concept

in curvelinear coordinates can be expressed

E = αB + γ×B− β · (∇×B)− δ× (∇×B)− κ · (∇B)sym (9)

Coefficients, vectors γ and δ, second rank tensors α and β, and third rank
tensor κ represent a decomposiiton of the velocity field and can be related to
physical processes, helping us to understand the structure of the dynamo.

Assuming axisymmetry in spherical geometry, then reduce to
27 independent coefficients

How might we determine these coefficients?
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mean field concept

Assume Eq.(8) for b pertains to a steady test field BT

∂b
∂t
−∇× (U × b)−∇×G − η∇2b = ∇× (u ×BT ) (10)

For any given test field B
(i)
T the EMF, depending only on U and

u, can be expressed

E (i) = ãjkB
(i)
Tk

+ b̃jkr
∂B

(i)
Tk

∂r
+ b̃jkθ

1
r

∂B
(i)
Tk

∂θ
(11)

Applying these to 9 linearly independent axisymmetric test
fields we can solve simultaneously for the 27 independent
coefficients

How plausible is the mean field model?
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verification of mean field model

So, assuming we have the coefficients and can analyse what
role the various processes play in the dynamo.

Is it meaningful?

It depends on the extent to which the EMF satisfies the
assumptions

How does the mean field dynamo compare with the full
solution?
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magnetoconvection-B

Figure: (Schrinner et al. 2007) magnetoconvection: azimuthally averaged
magnetic field components resulting from DNS (upper), mean-field
calculations derived from test field (lower). [(ρµ0ηΩ)1/2]



magnetoconvection-E

Figure: (Schrinner et al. 2007) electromotive forces in the
magnetoconvection (top) EMHD

r , EMHD
θ , EMHD

φ , and (bottom) EMF
r , EMF

θ , EMF
φ .

[(η/D)(ρµ0ηΩ)1/2]



test field application to millenium data

Figure: Upper: αrr (0.74R�,0.73rad), box-car averaged over 9 month
intervals (blue), standard deviation over interval (error bars). Lower:
Perturbations α′rrrms

box-car averaged over 9 months



time averaged α-tensor steady cyclic

Figure: Time and azimuthally averaged α-tensor for the period
corresponding to steady cyclic epoch



time evolution α-tensor - base

Figure: Time evolution of azimuthally averaged α-tensor spanning steady
cyclic epoch near the base of the convection zone



time evolution α-tensor - surface

Figure: Time evolution of azimuthally averaged α-tensor spanning steady
cyclic epoch near the surface of the convection zone



summary remarks

I αrr strongest tensor component - 5x

I α up to 10x stronger than other tensors
but we require curl of contraction with B?

I time averaged tensors robust profiles - little cyclic
behaviour - consistent between epochs
grand minima radial tensor components tend to be slightly
weaker - latitudinal components slightly stronger

I mean field alone unlikely to recover full dynamo solution
fluctuations about 10x mean values - but follow mean
magnitude?

I mean field model may work with simple random
fluctuations?
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