

# Long term variabilty of the solar dynamo 

Frederick Gent ${ }^{1}$
Maarit Käpylä ${ }^{1}$, Petri Käpylä ${ }^{-1}$, Mathias Rheinhardt ${ }^{1}$, Jörn Warnecke ${ }^{2}$, Axel Brandenburg ${ }^{3}$

${ }^{1}$ ReSoLVE, Department of Computer Science, Aalto University, Espoo, Finland<br>${ }^{2}$ Max-Planck-Institut für Sonnensystemforschung, Göttingen, Germany ${ }^{3}$ NORDITA, Stockholm, Sweden

Space Climate 6 Symposium - Levi - April 4, 2016

## A "millenium" solar-like dynamo



Global spherical convection dynamo e.g. (Käpylä et al. 2013, Käpylä et al. 2015)

## A "millenium" solar-like dynamo



Figure: $B_{\phi}$ averaged azimuthally as function of latitude over time - layers near the base, middle and surface of the convection zone. Time derived by $5 \Omega_{\odot} / R_{\odot}$, for a solar size star rotating $5 x$ solar rate

$$
\begin{equation*}
\frac{\partial \boldsymbol{A}}{\partial t}=\boldsymbol{U} \times \boldsymbol{B}-\mu_{0} \eta \boldsymbol{J} \tag{1}
\end{equation*}
$$

$$
\begin{gather*}
\frac{\partial \boldsymbol{A}}{\partial t}=\boldsymbol{U} \times \boldsymbol{B}-\mu_{0} \eta \boldsymbol{J},  \tag{1}\\
\frac{D \ln \rho}{D t}=-\boldsymbol{\nabla} \cdot \boldsymbol{U}, \tag{2}
\end{gather*}
$$

## model MHD equations

$$
\begin{gather*}
\frac{\partial \boldsymbol{A}}{\partial t}=\boldsymbol{U} \times \boldsymbol{B}-\mu_{0} \eta \boldsymbol{J},  \tag{1}\\
\frac{D \ln \rho}{D t}=-\boldsymbol{\nabla} \cdot \boldsymbol{U}, \tag{2}
\end{gather*}
$$

$$
\begin{equation*}
\frac{D \boldsymbol{U}}{D t}=\boldsymbol{g}-2 \boldsymbol{\Omega}_{0} \times \boldsymbol{U}+\frac{1}{\rho}(\boldsymbol{J} \times \boldsymbol{B}-\nabla p+\boldsymbol{\nabla} \cdot 2 v \rho \mathbf{S}), \tag{3}
\end{equation*}
$$

## model MHD equations

$$
\begin{gather*}
\frac{\partial \boldsymbol{A}}{\partial t}=\boldsymbol{U} \times \boldsymbol{B}-\mu_{0} \eta \boldsymbol{J},  \tag{1}\\
\frac{D \ln \rho}{D t}=-\boldsymbol{\nabla} \cdot \boldsymbol{U}, \tag{2}
\end{gather*}
$$

$$
\begin{align*}
& \frac{D \boldsymbol{U}}{D t}=\boldsymbol{g}-2 \Omega_{0} \times \boldsymbol{U}+\frac{1}{\rho}(\boldsymbol{J} \times \boldsymbol{B}-\nabla p+\nabla \cdot 2 v \rho \mathbf{S})  \tag{3}\\
& T \frac{D s}{D t}=\frac{1}{\rho}\left[-\boldsymbol{\nabla} \cdot\left(\boldsymbol{F}^{\mathrm{rad}}+\boldsymbol{F}^{\mathrm{SGS}}\right)+\mu_{0} \eta \boldsymbol{J}^{2}\right]+2 v \mathbf{S}^{2} \tag{4}
\end{align*}
$$

## model MHD equations

$\frac{\partial \boldsymbol{A}}{\partial t}=\boldsymbol{U} \times \boldsymbol{B}-\mu_{0} \eta \boldsymbol{J}$,

$$
\frac{D \ln \rho}{D t}=-\boldsymbol{\nabla} \cdot \boldsymbol{U}
$$

$$
\begin{gather*}
\frac{D \boldsymbol{U}}{D t}=\boldsymbol{g}-2 \Omega_{0} \times \boldsymbol{U}+\frac{1}{\rho}(\boldsymbol{J} \times \boldsymbol{B}-\nabla p+\nabla \cdot 2 v \rho \mathbf{S})  \tag{3}\\
T \frac{D s}{D t}=\frac{1}{\rho}\left[-\nabla \cdot\left(\boldsymbol{F}^{\mathrm{rad}}+\boldsymbol{F}^{\mathrm{SGS}}\right)+\mu_{0} \eta \boldsymbol{J}^{2}\right]+2 v \mathbf{S}^{2}  \tag{4}\\
\boldsymbol{F}^{\mathrm{rad}}=-K \nabla T \quad \text { and } \quad \boldsymbol{F}^{\mathrm{SGS}}=-\chi_{\mathrm{SGS}} \rho T \nabla \boldsymbol{s}
\end{gather*}
$$

are heat fluxes, radiative and SGS (sub grid scale - numerical stability)


U
$\boldsymbol{B}=\boldsymbol{\nabla} \times \boldsymbol{A} \quad$ magnetic field
$\boldsymbol{J}=\mu_{0}^{-1} \boldsymbol{\nabla} \times \boldsymbol{B}$
$\mu_{0}$
$D / D t=\partial / \partial t+\boldsymbol{u} \cdot \nabla$
S
$\rho$
$v$
$\eta$
K
$\chi_{\text {SGS }}$
$S$
$T$
$p$
velocity
current density
vacuum permeability
material derivative
rate of strain tensor
density
kinematic viscosity
magnetic diffusivity
specific entropy
temperature
pressure
magnetic vector potential radiative heat conductivity
turbulent heat conductivity (unresolved convective transport of heat)

Ideal gas law: $p=\left(c_{P}-c_{V}\right) \rho T$, where adiabatic index $\gamma=c_{P} / c_{V}=5 / 3$.

# A long term variation of magnetic cycle 



Figure: $\left\langle B_{\phi}\right\rangle_{\phi}$ near surface of the convection zone during grand minima south then north.


Figure: $\left\langle B_{\phi}\right\rangle_{\phi}$ near base of the convection zone during grand minima south then north.

## A long term variation of magnetic cycle



Figure: $\left\langle B_{\phi}\right\rangle_{\phi}$ near surface of the convection zone during grand minima south then north.


Figure: $\left\langle B_{\phi}\right\rangle_{\phi}$ near base of the convection zone during grand minima south then north.


Figure: Parity (black) and $\left\langle B_{\phi}\right\rangle_{\phi}$ near surface ( N :blue, $\mathrm{S}:$ red) at $\pm 25^{\circ}$ latitude, during high state of base toroidal mode


Figure: $\left\langle B_{\phi}\right\rangle_{\phi}$ near the surface of the convection zone during switch from N-S symmetry to asysmmetry.
(Schrinner et al. 2007) expressed the induction equation in terms of the mean field (e.g. azimuthal average)
such that $\boldsymbol{B}=\overline{\boldsymbol{B}}+\boldsymbol{b}$ and $\boldsymbol{U}=\overline{\boldsymbol{U}}+\boldsymbol{u}$
Taking the curl of (1)

$$
\begin{equation*}
\frac{\partial}{\partial t}(\overline{\boldsymbol{B}}+\boldsymbol{b})=\nabla \times(\overline{\boldsymbol{U}}+\boldsymbol{u}) \times(\overline{\boldsymbol{B}}+\boldsymbol{b})+\eta \nabla^{2}(\overline{\boldsymbol{B}}+\boldsymbol{b}) \tag{6}
\end{equation*}
$$

(Schrinner et al. 2007) expressed the induction equation in terms of the mean field (e.g. azimuthal average)
such that $\boldsymbol{B}=\overline{\boldsymbol{B}}+\boldsymbol{b}$ and $\boldsymbol{U}=\overline{\boldsymbol{U}}+\boldsymbol{u}$
Taking the curl of (1)

$$
\begin{gather*}
\frac{\partial}{\partial t}(\overline{\boldsymbol{B}}+\boldsymbol{b})=\nabla \times(\overline{\boldsymbol{U}}+\boldsymbol{u}) \times(\overline{\boldsymbol{B}}+\boldsymbol{b})+\eta \nabla^{2}(\overline{\boldsymbol{B}}+\boldsymbol{b}),  \tag{6}\\
\frac{\partial \overline{\boldsymbol{B}}}{\partial t}=\nabla \times(\overline{\boldsymbol{U}} \times \overline{\boldsymbol{B}})+\nabla \times \mathcal{E}+\eta \nabla^{2} \overline{\boldsymbol{B}}, \tag{7}
\end{gather*}
$$

where the electromotive force (EMF) $\mathcal{E}=\overline{\boldsymbol{u} \times \boldsymbol{b}}$

## mean field concept

(Schrinner et al. 2007) expressed the induction equation in terms of the mean field (e.g. azimuthal average)
such that $\boldsymbol{B}=\overline{\boldsymbol{B}}+\boldsymbol{b}$ and $\boldsymbol{U}=\overline{\boldsymbol{U}}+\boldsymbol{u}$
Taking the curl of (1)

$$
\begin{equation*}
\frac{\partial}{\partial t}(\bar{B}+\boldsymbol{b})=\nabla \times(\overline{\boldsymbol{U}}+\boldsymbol{u}) \times(\overline{\boldsymbol{B}}+\boldsymbol{b})+\eta \nabla^{2}(\overline{\boldsymbol{B}}+\boldsymbol{b}) \tag{6}
\end{equation*}
$$

$$
\frac{\partial \overline{\boldsymbol{B}}}{\partial t}=\nabla \times(\overline{\boldsymbol{U}} \times \overline{\boldsymbol{B}})+\nabla \times \mathcal{E}+\eta \nabla^{2} \overline{\boldsymbol{B}},
$$

where the electromotive force (EMF) $\mathcal{E}=\overline{\boldsymbol{u} \times \boldsymbol{b}}$

$$
\begin{equation*}
\frac{\partial \boldsymbol{b}}{\partial t}=\nabla \times(\overline{\mathbf{U}} \times \boldsymbol{b})+\nabla \times(\boldsymbol{u} \times \overline{\boldsymbol{B}})+\nabla \times \boldsymbol{G}+\eta \nabla^{2} \boldsymbol{b} \tag{8}
\end{equation*}
$$

where $\boldsymbol{G}=\boldsymbol{u} \times \boldsymbol{b}-\overline{\boldsymbol{u} \times \boldsymbol{b}}$
$\mathcal{E}$ is a functional of $\boldsymbol{u}, \overline{\boldsymbol{U}}$ and $\overline{\boldsymbol{B}}$, i.e. linear in $\overline{\boldsymbol{B}}$ Let us assume that $\boldsymbol{b}$ vanishes for $\overline{\boldsymbol{B}} \rightarrow 0$
$\mathcal{E}$ is a functional of $\boldsymbol{u}, \overline{\boldsymbol{U}}$ and $\overline{\boldsymbol{B}}$, i.e. linear in $\overline{\boldsymbol{B}}$
Let us assume that $\boldsymbol{b}$ vanishes for $\overline{\boldsymbol{B}} \rightarrow 0$
Further assume only weakly in space and time
In general, if no higher than first order spatial derivatives and no time derivatives of $\boldsymbol{B}$ are taken into account then in general

$$
\mathcal{E}=\mathbf{a} \overline{\boldsymbol{B}}+\mathbf{b} \nabla \overline{\boldsymbol{B}}
$$

with second rank $\mathbf{a}$ and third rank $\mathbf{b}$ tensors
i.e. 36 independent coefficients
in curvelinear coordinates can be expressed

$$
\begin{equation*}
\mathcal{E}=\alpha \overline{\boldsymbol{B}}+\gamma \times \overline{\boldsymbol{B}}-\beta \cdot(\nabla \times \overline{\boldsymbol{B}})-\delta \times(\nabla \times \overline{\boldsymbol{B}})-\kappa \cdot(\nabla \overline{\boldsymbol{B}})^{\text {sym }} \tag{9}
\end{equation*}
$$

in curvelinear coordinates can be expressed

$$
\begin{equation*}
\mathcal{E}=\alpha \overline{\boldsymbol{B}}+\gamma \times \overline{\boldsymbol{B}}-\beta \cdot(\nabla \times \overline{\boldsymbol{B}})-\delta \times(\nabla \times \overline{\boldsymbol{B}})-\kappa \cdot(\nabla \overline{\boldsymbol{B}})^{\text {sym }} \tag{9}
\end{equation*}
$$

Coefficients, vectors $\gamma$ and $\delta$, second rank tensors $\alpha$ and $\beta$, and third rank tensor $\kappa$ represent a decomposiiton of the velocity field and can be related to physical processes, helping us to understand the structure of the dynamo.

Assuming axisymmetry in spherical geometry, then reduce to 27 independent coefficients
in curvelinear coordinates can be expressed

$$
\begin{equation*}
\mathcal{E}=\alpha \overline{\boldsymbol{B}}+\gamma \times \overline{\boldsymbol{B}}-\beta \cdot(\nabla \times \overline{\boldsymbol{B}})-\delta \times(\nabla \times \overline{\boldsymbol{B}})-\kappa \cdot(\nabla \overline{\boldsymbol{B}})^{\text {sym }} \tag{9}
\end{equation*}
$$

Coefficients, vectors $\gamma$ and $\delta$, second rank tensors $\alpha$ and $\beta$, and third rank tensor $\kappa$ represent a decomposiiton of the velocity field and can be related to physical processes, helping us to understand the structure of the dynamo.

Assuming axisymmetry in spherical geometry, then reduce to 27 independent coefficients

How might we determine these coefficients?

Assume Eq.(8) for $\boldsymbol{b}$ pertains to a steady test field $\overline{\boldsymbol{B}}_{T}$

$$
\begin{equation*}
\frac{\partial \boldsymbol{b}}{\partial t}-\nabla \times(\overline{\boldsymbol{U}} \times \boldsymbol{b})-\nabla \times \boldsymbol{G}-\eta \nabla^{2} \boldsymbol{b}=\nabla \times\left(\boldsymbol{u} \times \overline{\boldsymbol{B}}_{T}\right) \tag{10}
\end{equation*}
$$

## mean field concept

Assume Eq.(8) for $\boldsymbol{b}$ pertains to a steady test field $\overline{\boldsymbol{B}}_{T}$

$$
\begin{equation*}
\frac{\partial \boldsymbol{b}}{\partial t}-\nabla \times(\overline{\boldsymbol{U}} \times \boldsymbol{b})-\nabla \times \boldsymbol{G}-\eta \nabla^{2} \boldsymbol{b}=\nabla \times\left(\boldsymbol{u} \times \overline{\boldsymbol{B}}_{T}\right) \tag{10}
\end{equation*}
$$

For any given test field $\overline{\boldsymbol{B}}_{T}^{(i)}$ the EMF, depending only on $\overline{\boldsymbol{U}}$ and $\boldsymbol{u}$, can be expressed

$$
\begin{equation*}
\mathcal{E}^{(i)}=\tilde{a}_{j k} \bar{B}_{T_{k}}^{(i)}+\tilde{b}_{j k r} \frac{\partial \overline{\boldsymbol{B}}_{T_{k}}^{(i)}}{\partial r}+\tilde{b}_{j k \theta} \frac{1}{r} \frac{\partial \overline{\boldsymbol{B}}_{T_{k}}^{(i)}}{\partial \theta} \tag{11}
\end{equation*}
$$

Applying these to 9 linearly independent axisymmetric test fields we can solve simultaneously for the 27 independent coefficients

## mean field concept

Assume Eq.(8) for bertains to a steady test field $\overline{\boldsymbol{B}}_{T}$

$$
\begin{equation*}
\frac{\partial \boldsymbol{b}}{\partial t}-\nabla \times(\overline{\boldsymbol{U}} \times \boldsymbol{b})-\nabla \times \boldsymbol{G}-\eta \nabla^{2} \boldsymbol{b}=\nabla \times\left(\boldsymbol{u} \times \overline{\boldsymbol{B}}_{T}\right) \tag{10}
\end{equation*}
$$

For any given test field $\overline{\boldsymbol{B}}_{T}^{(i)}$ the EMF, depending only on $\overline{\boldsymbol{U}}$ and $\boldsymbol{u}$, can be expressed

$$
\begin{equation*}
\mathcal{E}^{(i)}=\tilde{a}_{j k} \bar{B}_{T_{k}}^{(i)}+\tilde{b}_{j k r} \frac{\partial \overline{\boldsymbol{B}}_{T_{k}}^{(i)}}{\partial r}+\tilde{b}_{j k \theta} \frac{1}{r} \frac{\partial \overline{\boldsymbol{B}}_{T_{k}}^{(i)}}{\partial \theta} \tag{11}
\end{equation*}
$$

Applying these to 9 linearly independent axisymmetric test fields we can solve simultaneously for the 27 independent coefficients

How plausible is the mean field model?

So, assuming we have the coefficients and can analyse what role the various processes play in the dynamo.

Is it meaningful?

So, assuming we have the coefficients and can analyse what role the various processes play in the dynamo.

Is it meaningful?

It depends on the extent to which the EMF satisfies the assumptions

So, assuming we have the coefficients and can analyse what role the various processes play in the dynamo.

Is it meaningful?

It depends on the extent to which the EMF satisfies the assumptions

How does the mean field dynamo compare with the full solution?
M. Schrinner, K.-H. Rädler, D. Schmitt, M. Rheinhardt and U. R. Christensen


Figure: (Schrinner et al. 2007) magnetoconvection: azimuthally averaged magnetic field components resulting from DNS (upper), mean-field calculations derived from test field (lower). [ $\left.\left.\rho \mu_{0} \eta \Omega\right)^{1 / 2}\right]$

## magnetoconvection- $\mathcal{E}$

M. Schrinner, K.-H. Rädler, D. Schmitt, M. Rheinhardt and U. R. Christensen

Max: 266 Min: -4.08


Max: 2.16
Min : - 2.16


Mar: 204
Min: - 204


Max: 2.87
Min : -0.59


Max: 2.55
Min: -4.24


Figure: (Schrinner et al. 2007) electromotive forces in the magnetoconvection (top) $\mathcal{E}_{r}^{\mathrm{MHD}}, \mathcal{E}_{\theta}^{\mathrm{MHD}}, \mathcal{E}_{\phi}^{\mathrm{MHD}}$, and (bottom) $\mathcal{E}_{r}^{\mathrm{MF}}, \mathcal{E}_{\theta}^{\mathrm{MF}}, \mathcal{E}_{\phi}^{\mathrm{MF}}$. $\left[(\eta / D)\left(\rho \mu_{0} \eta \Omega\right)^{1 / 2}\right]$

## A test field application to millenium data






Figure: Upper: $\alpha_{r r}\left(0.74 R_{\odot}, 0.73 \mathrm{rad}\right)$, box-car averaged over 9 month intervals (blue), standard deviation over interval (error bars). Lower:
Perturbations $\alpha_{r_{r \text { rms }}}^{\prime}$ box-car averaged over 9 months

## A time averaged $\alpha$-tensor steady cyclic



Figure: Time and azimuthally averaged $\alpha$-tensor for the period corresponding to steady cyclic epoch

## A time evolution $\alpha$-tensor - base OF FINI AND




Figure: Time evolution of azimuthally averaged $\alpha$-tensor spanning steady cyclic epoch near the base of the convection zone

## A mime evolution $\alpha$-tensor - surface



Figure: Time evolution of azimuthally averaged $\alpha$-tensor spanning steady cyclic epoch near the surface of the convection zone

- $\alpha_{r r}$ strongest tensor component $-5 x$
- $\alpha_{r r}$ strongest tensor component - $5 x$
- $\alpha$ up to 10x stronger than other tensors but we require curl of contraction with $\bar{B}$ ?
- $\alpha_{r r}$ strongest tensor component $-5 x$
- a up to 10x stronger than other tensors but we require curl of contraction with $\bar{B}$ ?
- time averaged tensors robust profiles - little cyclic behaviour - consistent between epochs
- $\alpha_{r r}$ strongest tensor component $-5 x$
- $\alpha$ up to 10x stronger than other tensors but we require curl of contraction with $\bar{B}$ ?
- time averaged tensors robust profiles - little cyclic behaviour - consistent between epochs grand minima radial tensor components tend to be slightly weaker - latitudinal components slightly stronger
- $\alpha_{r r}$ strongest tensor component - $5 x$
- $\alpha$ up to 10x stronger than other tensors but we require curl of contraction with $\bar{B}$ ?
- time averaged tensors robust profiles - little cyclic behaviour - consistent between epochs grand minima radial tensor components tend to be slightly weaker - latitudinal components slightly stronger
- mean field alone unlikely to recover full dynamo solution
- $\alpha_{r r}$ strongest tensor component - $5 x$
- $\alpha$ up to 10x stronger than other tensors but we require curl of contraction with $\bar{B}$ ?
- time averaged tensors robust profiles - little cyclic behaviour - consistent between epochs grand minima radial tensor components tend to be slightly weaker - latitudinal components slightly stronger
- mean field alone unlikely to recover full dynamo solution fluctuations about 10x mean values - but follow mean magnitude?
- $\alpha_{r r}$ strongest tensor component - $5 x$
- $\alpha$ up to 10x stronger than other tensors but we require curl of contraction with $\bar{B}$ ?
- time averaged tensors robust profiles - little cyclic behaviour - consistent between epochs grand minima radial tensor components tend to be slightly weaker - latitudinal components slightly stronger
- mean field alone unlikely to recover full dynamo solution fluctuations about 10x mean values - but follow mean magnitude?
- mean field model may work with simple random fluctuations?

Käpylä M J, Käpylä P J, Olspert N, Brandenburg A, Warnecke J, Karak B B \& Pelt J 2015 ArXiv e-prints .
Käpylä P J, Mantere M J, Cole E, Warnecke J \& Brandenburg A 2013 ApJ 778, 41.
Schrinner M, Rädler K H, Schmitt D, Rheinhardt M \& Christensen U R 2007 Geophysical and Astrophysical Fluid Dynamics 101, 81-116.

