Statistics and clustering of extreme space climate events

Alexander Ruzmaikin

Statistics of Large Numbers: LLN, CLT, Gaussian Distribution

Stable distribution

Law of Small Numbers

Statistics of Extremes

The Beginning: Nikolaus Bernoulli's problem of 1709

If n men of equal age die within t years, what is the expected life of the last man?

Find the solution

Statistics of Small Numbers?!

Ladislav von Bortkiewich (1868-1931)

DAS GESETZ DER KLEINEN ZAHLEN VON Æ LEIPZIG DRUCK UND VERLAG VON B. G. TEUBNER 1898

Prussian army horse-kick problem

Fisher-Tippett-Gnedenko Theorem

Ronald Fisher (1890-1962) Statistical Methods for Research Workers Leonard Tippett (1902-1985) British Cotton Industry random number table (now random number generators) Boris Gnedenko (1912-1995) Textile Institute, Ivanovo

The FTG Theorem

If $e_1, e_2, \dots, e_n, \dots$ are iid random events and $M_n = \max(e_1, e_2, \dots, e_n)$

Then $Prob(M_n \le x)$, as $n \rightarrow is$

GEV = exp{
$$-(1 + \gamma(x-\mu)/\sigma)^{-1/\gamma}$$
}, $1 + \gamma(x-\mu)/\sigma$ > 0,

where σ is scale, $\mu~$ is location and $\gamma~$ is shape

Predecessors

Dependent on $\gamma = 1/\alpha$, $y = (x-\mu)/\sigma$

$$G = \exp\{-\exp(-y)\}, \qquad \gamma = 0$$

$$\mathsf{F} = \exp(\mathsf{-} \mathsf{y}^{\Box \alpha}) \approx \mathsf{1} \mathsf{-} \mathsf{y}^{\Box \alpha}, \quad \gamma > 0, \quad \mathsf{y} > 0 \qquad (\mathsf{F} = 0, \, \mathsf{y} > 0)$$

$$W = \exp{-(-y^{\alpha})},$$
 γ < 0, y < 0 (W = 1, y ≥ 0)

Gumbel (1891-1966)

Frechet(1878-1973)

Probability Densities (PDFs)

The Theorem: Details

$$M_n = max(e_1, e_2, ..., e_n), Prob(e_i < x) = F(x)$$

 $Prob(M_n \le x) = Prob(e_1 \le x)... Prob(e_n \le x) = F(x)^n$

Max Stability: $F(x)^n = F(a_nx + b_n)$, as $n \rightarrow (Frechet, 1927)$

Gumbel: $a_n = 1, b_n = -\sigma \log(n)$

Frechet: $a_n = n^{-1/\alpha} b_n = m(1 - n^{-1/\alpha})$

(Gnedenko, 1943)

Application to Solar Coronal Mass Ejections

Coronal Mass Ejections (CMEs)

CMEs are drivers of Space Weather since they generate energetic particles and disturb the Earth magnetosphere triggering geomagnetic storms

Fast CMEs

Observed Sep 24, 2001. Speed 2,508 km/sec.

6 rotations, S. Hemisphere (180-360°)

Distribution Function of CME speeds

9,408 CMEs detected by SOHO LASCO in 1999-2006

Non-Gaussian PDF

Vmean = 472 km/s

Extremes:

- 18% V > 700 km/s 6.2% V > 1,000 km/s
- 0.5% V > 2,000 km/s.

We can directly fit maxima to GEV distribution

Great!

- But there are no mathematically justified procedure for curve fitting.
- It depends on:

data sample, adjustable parameters, skill of a researcher.

A. N. Kolmogorov

Scaling Approach

$$\delta \mathbf{u}(r) = \mathbf{u}(\mathbf{x} + \mathbf{r}) - \mathbf{u}(\mathbf{x})$$

$$\langle [\delta \mathbf{u}(r)]^n \rangle = C_n \varepsilon^{n/3} r^{n/3}$$

Scaling Approach to Extremes

Stoev et al., 2006

n∆t, Y(n)

Consider time series of CME speeds, V(t).

Divide time axis into progressively increasing blocks: $\Delta t = 2^{j}$, j =1,2,3,...

Find maxima $M = \max V(j)$ at each time scale.

Take log and average over number of intervals (k):

 $Y(j) = N^{-1} \sum_{k} \log_2 M(j,k)$ -- Max Spectrum

Max Spectrum

Range of speeds limited by linear fit gives a definition of "fast" CMEs.

CDF Tail of Fast CMEs

Cumulative distribution function. Its high-speed tail is $1 - V^{-\alpha}$.

The slope of Max Spectrum (1/α) is a heavytail exponent of extreme value probability density

$$P = \exp(-Cx^{-\alpha}) \sim 1 - x^{-\alpha}$$
, as $x \to \infty$.

Stoev et al. 2006

Frequency of Occurrence of Fast CMEs

For a pure random (Poisson) process the times between events $\tau = t(i+1) - t(i)$ are independent and exponentially distributed: exp(- τ/τ_0). Observed fast CMEs (blue) are correlated (clustered) in time.

Clustering of extremes is characterized by the index $0 < \theta \le 1$: exp(- $\theta \tau/\tau_0$).

Troubles Never Come Alone

Extremal Index of Fast CMEs

Fast CMEs with speeds 1,000-2,000 km/s arrive in clusters, *on average* 2-3 events closely spaced in time.

Fast CME Clusters

Size	N of Clusters	N of CMEs in Clusters	Proportion %	Mean Duration (hrs)
1	177	177	61	_
2	53	106	18	20
3	18	54	6	40
4	20	80	7	57
5	7	35	2	70
>5	17	169	6	108

 $<\!\theta$ > = 0.5, and speeds > 1000 km/s

Summary of the Data Analysis

- ✓ The Max Spectrum defines two exponents of extreme events: α (tail exponent) and θ (extremal index)
- ✓ The cumulative distribution of fast CMEs speeds follows a power law with α H 3.4 (Fréchet extremes). This exponent defines *the fast CMEs.*
- ✓ The fast CMEs (and extreme SEPs associated with them) come in clusters. If one fast CME occurs it is followed on average by one or two other fast CME in a relatively short time. The mean time between CMEs with speeds exceeding 1,000 km/s is 42 hrs.

References

Stoev, S. A., G. Michailidis, and M.S. Taqqu (2006), Estimating heavy-tail exponents through max self-similarity, *Tech. Reports* 445, 447, *Dep. Statistics, Univ. Michigan.*

Hamidieh, K., S. Stoev, and G. Michailidis (2009), On the estimation of the extremal index based on scaling and resampling, *J. Comput. Graph. Statistics*, 18, 731--755, doi10.1198/cgs.2009.08065.

Ruzmaikin, A., J. Feynman, and S. Stoev (2011), Distribution and clustering of fast coronal mass ejections, *J. Geophys. Res.*,116, doi:10.1029/2010JA016247.

Questions?