MODELS OF SOLAR IRRADIANCE and their reliance on data

Natalie Krivova

http://www.mps.mpg.de/projects/sun-climate/

Solar Irradiance (TSI): Measurements

Greg Kopp

Solar Irradiance (TSI): Measurements

TSI composite Physicalisch-Meteoroligisches Observatorium Davos (PMOD; C. Fröhlich)

Solar cycle

Solar rotation

Spots vs. faculae

Spots vs. faculae

Spots vs. faculae

A LANT INCCOOL AND A CTCOLLOOK AND

Solar rotation

Solar Irradiance Variability Spots vs. faculae

1996, Minimum

MDI Synoptic Chart from /synop/lc/1915/synop_lc_N=5.1915.fits

Data: SoHO/MDI

2000, Maximum

Basis for Irradiance Modelling

Yeo e<u>t al. 201</u>4

 $\Delta S(t) = \Delta S_{s}(t) + \Delta S_{f}(t)$

Minutes to hours: granulation

- Granulation is NOT covered by this kind of models;
- only the magnetic component of the variation;
- i.e. timescales >≈ 1 day

Basis for Irradiance Modelling

Yeo e<u>t al. 201</u>4

 $\Delta S(t) = \Delta S_{s}(t) + \Delta S_{f}(t)$

TSI & Solar Magnetic Activity Proxies

PROXY MODELS

Combine sunspot darkening, e.g. **PSI**, with facular/plage/network brightening, **Facular Proxy** (e.g. Mg index, Ca II, F10.7) via linear or multiple regressions

 $S(t) = \kappa_1 PSI(t) + \kappa_2 FP(t)$ $\geq 2 \text{ free param.}$

SEMI-EMPIRICAL MODELS

1. Surface area coverage (filling factors) and ideally positions (function of time)

2. Brightness of each component *(function of wavelength and disc position)* calculated from semi-empirical model atmospheres

(e.g., Kurucz models, Fontenla et al. 1999, 2009, 2011; Unruh et al. 1999; Shapiro et al. 2010)

using spectral synthesis codes (e.g., SRPM, NESSY or ATLAS9, the latter uses LTE)

 \geq 1 free param.

Spectral And Total Irradiance Reconstructions for the Satellite era (SATIRE-S)

Magnetograms and continuum images KP/512, KP/SPM, SoHO/MDI, SDO/HMI

Yeo et al. 2014

Intensity spectra from semiempirical model atmospheres Unruh et al. 1999

 $S(\lambda,t) = \sum_{i=0,N} \left(\alpha_i(t, \mu) I_i(\lambda,\mu) \right)$

 $S(t) = \int S(\lambda, t) d\lambda$

Components (i): quiet Sun sunspot umbrae sunspot penumbrae faculae & network

Spectral And Total Irradiance Reconstructions for the Satellite era (SATIRE-S)

Magnetograms and continuum images KP/512, KP/SPM, SoHO/MDI, SDO/HMI Intensity spectra from semiempirical model atmospheres Unruh et al. 1999

Components: quiet Sun sunspot umbrae sunspot penumbrae faculae & network

Yeo et al. 2014

Solar Data as Input to Irradiance Models

ALL CURRENT MODELS USE DATA:

to describe surface coverage and the distribution of different features *as a function of time*

 disc-integrated proxies: sunspot number, area, plage area, Mg index, Ca II, F10.7, ¹⁰Be, ¹⁴C....
(NRLSSI, also SATIRE-T & SATIRE-H – i.e. before 1974, Shapiro et al. 2012)

 spatially resolved maps of the full disc:

magnetograms, continuum images, Ca II images...

(SATIRE-S, Fontenla et al. 2009, 2011, SFO & OAR models)

Solar Data as Input to Irradiance Models

Do not need to be from observations directly:

 Surface Flux Transport simulations (Wang et al. 2005, Jiang et al. 2011, Dasi et al. 2014, 2016)

Monte Carlo simulations
(Crouch et al. 2008, Bolduc et al. 2012)

ALL CURRENT MODELS USE DATA:

to describe surface coverage and the distribution of different features *as a function of time*

 disc-integrated proxies: sunspot number, area, plage area, Mg index, Ca II, F10.7, ¹⁰Be, ¹⁴C....
(NRLSSI, SATIRE-T & SATIRE-H – i.e. before 1974, Shapiro et al. 2012)

 spatially resolved maps of the full disc:

magnetograms, continuum Images, Ca II images...

(SATIRE-S, Fontenla et al. 2009, 2011, SFO & OAR models)

Solar Data as Input to Irradiance Models

Do not need to be from observations directly:

 Surface Flux Transport simulations (Wang et al. 2005, Jiang et al. 2011, Dasi et al. 2014, 2016)

Monte Carlo simulations
(Crouch et al. 2008, Bolduc et al. 2012)

ALL CURRENT MODELS USE DATA:

to describe surface coverage and the distribution of different features *as a function of time*

But they are still fed with solar data, such as sunspot numbers, areas, positions... (NP, SATIRE-T & SATIRE-H – i.e. petore 1974, Shapiro et al. 2012)

 spatially resolved maps of the full disc:

magnetograms, continuum images, Ca II images...

(SATIRE-S, Fontenla et al. 2009, 2011, SFO & OAR models)

Models vs. Measurements

Models vs. Measurements

Free parameter(s) are fixed from comparisons with irradiance measurements

Long-term trend in Mg index

M. Weber

Models vs. Measurements

Different secular trends are primarily due to different inputs used (proxy vs. MF observations)

Models vs. Measurements: Long Term Extrapolations

Steinhilber et al. 2009: use linear relationship between the TSI and OF during last 3 minima Free parameter(s) are fixed from comparisons with irradiance measurements

Models vs. Measurements: Long Term Extrapolations

Spectral Distribution of Irradiance Variability

Total energy: <a><10%

Contribution to Variability: ca.60%

Spectral Irradiance

SEMI-EMPIRICAL MODELS

$S(\lambda,t) = \sum_{i=0,N} (\alpha_i(t) I_i(\lambda))$

1. Surface area coverage (filling factors) and ideally positions (function of time)

2. Brightness of each component *(function of wavelength and disc position)* calculated from semi-empirical model atmospheres

(e.g., Kurucz models, Fontenla et al. 1999, 2009, 2011; Unruh et al. 1999; Shapiro et al. 2010)

using spectral synthesis codes

(e.g., SRPM, NESSY or ATLAS9, the latter uses LTE)

≥ 1 free param.

PROXY MODELS

Combine sunspot darkening, e.g. **PSI**, with facular/plage/network brightening, **Facular Proxy** (e.g. Mg index, Ca II, F10.7) via linear or multiple regressions

 $S(t) = \kappa_1 PSI(t) + \kappa_2 FP(t)$ $\geq 2 \text{ free param.}$

Spectral Irradiance

PROXY MODELS

Combine sunspot darkening, e.g. **PSI**, with facular/plage/network brightening, **Facular Proxy** (e.g. Mg index, Ca II, F10.7) via linear or multiple regressions

S (λ , t) = $\kappa_1(\lambda)$ PSI(t)+ $\kappa_2(\lambda)$ FP(t) ≥ 2 free param. at each λ

Spectral Irradiance

 Proxy models use SSI observations;

- Need measurements at each wavelength;
- Have multiple free parameters;

Spectral Irradiance: Measurements

SSI changes;

- In the UV in phase with the solar cycle;
- In the VIS ?

Spectral Irradiance: Measurements

 Solar cycle variability above 250-300 nm ≤ uncertainty,

for all instruments

PROXY MODELS

Combine sunspot darkening, e.g. **PSI**, with facular/plage/network brightening, **Facular Proxy** (e.g. Mg index, Ca II, F10.7) via linear or multiple regressions

S (λ , t) = $\kappa_1(\lambda)$ PSI(t)+ $\kappa_2(\lambda)$ FP(t) ≥ 2 free param. at each λ

Spectral Irradiance

 Proxy models use SSI observations;

- Need measurements at each wavelength;
- Have multiple free parameters;
- Strongly dependent on measurement noise;

• Above 250 nm they have to assume that the rotational variability scales to longer time scales.

- Sunspot number is the only available record
- Need to know the distribution of the total magnetic field on the surface

Magnetic flux in active regions

- Emergence is well described by sunspots;
- Evolution:
 - simple statistical relationships;
 - more sophisticated response functions;
 - Monte Carlo simulations;
 - more physical techniques:
 - ordinary differential equations or
 - Surface flux transport simulations

Modelling the secular change

Solar cycle: sunspots vs. ephemeral regions

Modelling the secular change

Cyclic flux emergence in active regions

Take sunspot number as a `proxy'

- Cyclic flux emergence in ephemeral regions

 Extended and thus overlapping ER cycles

ephemeral regions

Solanki et al. 2002

Modelling the secular change

1.8

Alternatives:

[Outlook] Analysis of historical Ca II images (Th. Chatzistergos);

must be properly processed and calibrated!

Reconstructions from cosmogenic isotope data (K. McCracken); but no simple linear regressions!

0.3

0.2

0.1

ĪSİ

Linear fit without Min 20/21: TSI = $(1364.65 \pm 0.40) + (0.38 \pm 0.17) \cdot B_{p} Wm^{-2}$

2.2

2.4

2.0

 B_n (nT)

Millennial timescales

Production of cosmogenic isotopes, e.g. ¹⁴C and ¹⁰Be

TSI since the Maunder Minimum

Summary

All existing irradiance models use data:

- as input
- space era solar images / magnetic maps, Mg II index, F10.7;
- telescope era sunspot areas, numbers;
- Holocene cosmogenic isotopes
- or to fix their free parameters
- TSI in all models;
- + SSI in empirical models
- … thus taking over their uncertainties
- partly amplifying them (purely empirical models)
- but partly also reducing (more physics-based models)

Thank You!