Cosmic Rays and Cosmogenic Isotopes

Ken McCracken

University of Maryland

jellore@hinet.net.au

KGMcC Space Climate School, Levi, Finland

1

COSMOGENIC DATA

NOT OBSERVATIONS BY MANKIND-

BUT OBSERVATIONS BY NATURE

That we have learned to interpret

-SOME EXAMPLES OF DATA THAT NATURE HAS RECORDED FOR US

Dye 3 and North GRIP <u>Annual</u> Data

KGMcC Space Climate School, Levi, Finland

McCracken and Beer, JGR, 2014.4.2016

THE SEQUENCE OF GRAND MINIMA-950-2000 AD

HE MAUNDER MINIMUM – UP CLOSE.

RASH SPECULATION- Extending our horizons

KGMcC Space Climate School, Levi, Finland

WHAT ARE THE COSMOGENIC NUCLIDES.....

HOW DO WE MEASURE THEM

HOW WE CALIBRATE THEM TO THE PRESENT,

AND WHAT THEY TELL US ABOUT SPACE CLIMATE

(and Physics can be fun).

Ionization Chamber, Huancayo, Peru. 1935-1970.

THE COSMIC RAYS-NEUTRON MONITOR DATA

Keeping the Right Stuff - Right

Problem - To protect the Apollo astronauts if a solar flare blasts the Moon with intense cosmic rays

Answer - Set up an expert committee

- Choose the time to go to the Moon well
- Give them a shovel.

Heliomagnetic Modulation

- *Forbush Decrease*: Reduction of the cosmic ray intensity by eruptions of solar plasma. Time scale: days.

An extreme-ultraviolet telescope onboard the orbiting Solar and Heliospheric Observatory (SOHO) captured this false-color movie of the Nov. 4, 2003, X28 superflare near the sun's limb.

http://science.nasa.gov/headlines/y2003/12nov_haywire.htm?list23606

CALIBRATING THE COSMOGENIC DATA TO THE MODERN INSTRUMMENTAL MEASUREMENTS OF THE COSMIC RADIATION.

(1)Measure the cosmic radiation spectrum using balloon and satellite instruments(1960-2010).

(2)Determine how it varies with solar activity and parameterise it with the "Modulation Function",1960-70.(Gleeson and Axford, 1967))

(3)Use mathematical codes to compute the production rates of ¹⁰Be and ¹⁴C as a function of cosmic radiation flux ,1990-2000. (Masarik and Beer,1999)

Hudson Bay, Northern Canada

Getreentered age

Pioneer 6 and 7, 1965-66

Solar Modulation and Modulation Function

KGMcC Space Climate School, Levi, Finland

1.4.2016

THE PALEO- COSMIC RADIATION RECORD

1. Sources of Cosmogenic Isotopes

cosmogenic: produced by cosmic rays

Interaction cosmic rays - *atmosphere*: dominant
Interaction cosmic rays - *lithosphere* (crust):1-2
m: reaction rate 2-3 orders of magnitude smaller
than in atmosphere. But: different elemental
composition -> different reaction products (³⁶Cl).

2-5000 m: (-reactions (rare)

>5000 m: { -reactions (very rare)

Monte Carlo Simulation

http://astro.uchicago.edu/cosmus/projects/aires/

Additional sources of radioactive isotopes in the lithosphere:

- Nuclear reactions induced by U, Th-decay
- Fission

Extraterrestrial Material

- ca. 5-200 tons/day

- High production rate of radioisotopes, due to missing shielding (atmosphere, magnetic field).

- Exposure times of meteorites:

Stone meteorites: $20-30\ 10^6$ years. Iron meteorites: 10^8-10^9 years.

Cosmic ray flux: over 10⁸-10⁹ years relatively constant.

Cosmogenic Isotopes with $T_{1/2} > 1$ Month

Isotope	T _{1/2}	Decay	Target	Prod.rate [atoms cm ⁻² s ⁻¹]
³ H	12.4 a	R	N, 0	0.28
⁷ Be	53 d	EC	N, O	0.035
¹⁰ Be	1.5 Ma	R	N, O	0.018
¹⁴ C	5730 a	R	N, O	2.02
²² Na	2.6 a	EC	Ar	
²⁶ A1	730 ka	EC	Ar	0.00014
³² Si	145 a	R	Ar	0.00016

Cosmogenic Isotopes with $T_{1/2} > 1$ Month

Isotope	T _{1/2}	Decay	Target	Prod.rate
				[atoms cm ⁻² s ⁻¹]
³⁵ S	87 d	R	Ar	
³⁶ Cl	201 ka	®, EC	Ar	0.0019
³⁷ Ar	35 d	EC	Ar	0.00041
³⁹ Ar	269 a	R	Ar	0.013
⁸¹ Kr	201 ka	EC	Kr	0.0000015
¹²⁹ I	15.8 Ma	R	Xe	

Radioisotopes with $T_{1/2} > 1$ month produced by cosmic rays in the atmosphere. (Lal & Peters, Masarik & Beer)

Global ¹⁰Be Deposition Flux

¹⁰Be Response Function

¹⁰Be Lab at Summit

GRIP Ice Core

Carbon Cycle- Averages over >1000 years.

http://earthobservatory.nasa.gov/Library/CarbonCycle/carbon_cycle4.html

Accelerator Mass Spectrometer ETH

- Acceleration: 6 MV
- 1 Mio ¹⁰Be atoms
- $10^{10} Be/9Be > 10^{-14}$
 - <1 kg of ice

KGMcC Space Climate School, Levi, Finland

AMS- ETH , Zurich

Comparison ¹⁰Be - ¹⁴C

Production Signals

First Principal Component

STUDIES IN THE TIME DOMAIN

¹⁰Be flux and geomagnetic field

OTHER SEQUENCES OF GRAND MINIMA-AND >1000 YR LONG INTERVALS BETWEEN

THE STATISTICS OF GRAND MINIMA

Number in 9400 years = about 24

Duration of		
Grand Minima	Duration (yr)	Number
	50	3
	70	9
	90	6
	110	2
	130	2
Total time Sun wa	s in Grand Minimum	n = 1540 years = 16%
Intervals between	GM sequences ≈	1200-1500 yr
Repetition period	of GM sequences = 2	2310 y (Hallstatt Cycle)

During GM sequence-win GM condition 40-42% of time

1.4.2016

TOURIST JUNK

SCHNIDEJOCH PASS OPEN (Suter et al, 2007)

1.4.2016

CORRELATION 3- GRAND JOVIAN ALIGNMENT "Syzygy"

STUDIES IN THE FREQUENCY DOMAIN

¹⁴C Power Spectrum

KGMcC Space Climate School, Levi, Finland

Fourier spectrum of ¹⁴C production (1 ky windows)

WHAT ABOUT EARLIER IN TIME??? ICE, AND OTHER HOSTS

Summary and Conclusions - 1

- Cosmogenic Isotopes:
 - produced by cosmic rays
 - cosmic rays modulated by solar magnetic field
 - cosmogenic isotopes stored in natural archives
- Main Results on Solar activity:
 - short and long-term variability
 - cyclic: 11-y, 87-y, 208-y, 2300-y,....
 - amplitude modulation
 - grand minima

KGMcC Space dyanamo, Lne Nrard Stops

Summary and Conclusions - 2

- Potential:
 - extension of solar activity record from 400 y to 100,000 y and beyond.
 - Sun: physics, characteristics of dynamo
 - Space: climate history and weather forecast
 - Earth: solar effects; past, present, and future solar forcing

53

THANK YOU

к_{GN} 2001/03/29 09:36 UT

10.1