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Machine Learning and Data Mining

Research Interests

◮ Artificial Intelligence (Deep belief networks etc.)

◮ Machine Learning

◮ Data Mining

◮ Computer Science

◮ Applications in environmental informatics and health



Contents of the Lecture, Part I

Topics on Time Series Prediction:

◮ Introduction and background

◮ Minitopics: Curse of dimensionality, Bootstrap,
Generalization, Cross-Validation

◮ Variable Selection in Time Series prediction models

◮ Missing data in Time Series Prediction

◮ Hands-on exercise with R SISAL package



Time Series Prediction: Introduction

Some useful methods for time series analysis and prediction:

◮ Wavelets

◮ Fourier analysis, FFT, DFT, Goertzel algorithm

◮ Dynamical models

◮ Probabilistic models: Hidden Markov Models, Kalman
filters, Dynamic Bayesian Networks

◮ Empirical mode demposition, SAX (Symbolic Aggregate
Approximation)

How to choose an appropriate method for your problem?



Time Series Prediction: Introduction

Two roles in data analysis:

◮ Users of data analysis: tools, understanding of methods

◮ Developers of data analysis: understanding of theory,
making tools

Interdisciplinary research:

◮ Experts in the domain, like space physics

◮ Experts in data analysis

◮ Data analysis is not a service, but a collaboration!

◮ Think what you can achieve together, before the
experiment!



Curse of Dimensionality
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Curse of Dimensionality

Curse of dimensionality is a fundamental law in data analysis

◮ Assume a d -dimensional unit hybercube (side equals 1),
with Volume V1 = 1d .

◮ Internal points are points if they are within a cube, side
equals 1− ǫ, with ǫ > 0, with Volume V1−ǫ = (1− ǫ)d

◮ Data is uniformly distributed in the cube

◮ Ratio of internal points to all points is

R = V1−ǫ

V1
= (1−ǫ)d

1d
= (1− ǫ)d

◮ If dimensions grow without bound: limd→∞(1− ǫ)d → 0.

This means (no matter how small our ǫ is) that in very high
dimensions all the points are on the surface of the cube!



Boostrapping for Uncertainty Estimation

The average of the data set:

◮ Data Set: X = {1.0, 1.3, 2.7, 4.9, 5.1}

◮ Sum of the data points:
∑5

i=1 xi = 15

◮ Average value: 1
5

∑5
i=1 xi = 3.0

Can we quantify the uncertainty of the average value?

◮ Answer: Bootstrapping, sampling with replacement

◮ Sample several data sets (N=5) with replacement

◮ Example 1: X ∗ = {1.0, 1.0, 2.7, 4.9, 5.1}

◮ Example 2: X ∗ = {1.0, 1.3, 2.7, 4.9, 5.1}

◮ Example 3: X ∗ = {1.3, 1.3, 2.7, 4.9, 4.9}

◮ and calculate the average for each data set to get a
empirical distribution of the average value



Generalization

◮ Generalization refers to the ability to generalize to unseen

data points measured in the future

◮ The aim of predictive modeling is to generalize, not to
describe the data set at hand

◮ A perfect fit?



Generalization

◮ Generalization refers to the ability to generalize to unseen

data points measured in the future

◮ Overfitting: fitting to training data too well, not being
able to generalize

◮ New data arrives..



Cross-validation for model assessment

◮ Anticausality: we can not optimize with regard to future,
unseen data points

◮ We can simulate this situation: cross-validation!

◮ Divide the data into a training data and hold-out data,
that is kept hidden from the data analyst

◮ Measure the model performance: training data set

◮ Measure the model performance: hold-out data set, or
sometimes called the validation set, or the test set



Cross-validation for model assessment

Example: 10-fold cross-validation repeated 2 times

◮ Divide, or partition the data into ten parts

◮ Use nine parts for training, one part is a hold-out set,
repeat 10 times for each choice of a hold-out set

◮ repeat twice, second time with a new partition

Partition 1

Partition 2

Fold 1Fold 2 . . .

You can estimate the errors based on 20 modeling efforts:

◮ 20 estimates for the training set, 20 for the hold-out set

◮ The hold-out sets emulate or mimic the future, unseen

data sets



Time Series: Some Examples
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Strategies: Time Series Prediction

◮ Turning the time series prediction problem into (a kind
of) a static regression problem

◮ Autoregressive time series prediction model

◮ xt+1 = f (xt , xt−1, xt−2, . . . , xt−d−1), f linear

◮ Takens theorem

Take a look at an example:

◮ Consider a time series: X = {1, 2, 3, 4, 5, 6, 7, 8}

◮ library(sisal)

◮ laggedData(1:8, 0:3, 1)

◮ laggedData(sunspot.month, 0:10, 1)



Strategies: Time Series Prediction

Choices to implement or use the regression model:

◮ Recursive Prediction Strategy

◮ Direct Prediction Strategy

◮ And variants



Recursive Prediction Strategy

Predictions are made one step-ahead at the time:

◮ x̂t+1 = f (xt , xt−1, xt−2, . . . xt−d+1)

◮ x̂t+2 = f (x̂t+1, xt , xt−1, xt−2, . . . xt−d)

◮ Benefits: Only one prediction model f to estimate

◮ Disadvantages: Accumulation of errors in each step



Direct Prediction Strategy

Predictions are made k steps ahead at once:

◮ x̂t+k = fk(xt , xt−1, xt−2, . . . xt−d+1)

◮ Benefits: The problem of k steps ahead prediction is
solved directly

◮ Disadvantages: Must train a model fk for each k

Take a look at an example:

◮ Consider a time series: X = {1, 2, 3, 4, 5, 6, 7, 8}

◮ library(sisal)

◮ laggedData(1:8, 0:3, 3)

◮ laggedData(sunspot.month, 0:10, 6)



Time Series Prediction: Long-term Prediction

What is long-term prediction depends on the context!

◮ Interesting phenomena vary from milliseconds to centuries

◮ Prediction further into the future is more difficult

◮ Direct Prediction Strategy is preferred



Sequential Input Selection Algorithm (SISAL)

Let us assume that there are N measurements available from a
time series xt, t = 1, . . . ,N. Future values of time series xt
are predicted using the previous values xt−i , i = 1, . . . , l . If
the dependency between the output xt and the inputs xt−i is
assumed to be linear it can be written as

xt =

l
∑

i=1

βixt−i + εt , (1)

which is a linear autoregressive process of order l or briefly
AR(l). The errors εt are supposed to beindependently
normally distributed with zero mean and common finite
variance εt ∼ N(0, σ2).



Sequential Input Selection Algorithm (SISAL)

Linear model as a predictor:

◮ Using linear prediction models implicity implies
linearization of the system

◮ Validity of assumptions of the linear model?

◮ Simple, too simple?

◮ You can build non-linearity on top of linearity afterwards



Input Variable Selection in Time Series Prediction

Start with a time series model with a lot of variables:

◮ You don’t really know which ones are the correct model
variables

◮ You want to reduce complexity (curse of dimensionality)

◮ Perform Variable Selection to reduce the number of
variables

◮ SISAL implements input variable selection in time series
models



Input Variable Selection in Time Series Prediction

Input Variable Selection: Search Strategies

◮ Forward-selection: greedily add variables

◮ Example: {} → {x1} → {x1, x5} . . .

◮ Backward selection: greedily remove variables

◮ Example: . . . → {x1, x4, x6} → {x4, x6} → {x4} → {}

◮ And a lot of variants . . .



Input Variable Selection in Time Series Prediction

SISAL uses Backward Selection Type of Search Strategy

◮ Start with a full model, remove variables

◮ Important Point: take uncertainty into account (by
bootstrapping)

◮ Advantage: you include all the variables in the beginning

◮ Disadvantage: you may end up with large models in the
beginning (use regularization)



Input Variable Selection in Time Series Prediction
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Input Variable Selection in Time Series Prediction
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Input Variable Selection in Time Series Prediction
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Predicting monthly sunspots: 1 month ahead
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Predicting monthly sunspots: 1 month ahead

Future values can be predicted with the following equation:

xt = 0.00 + 0.56xt−1 + 0.11xt−2 + 0.10xt−3

+ 0.09xt−4 + 0.04xt−5 + 0.07xt−6

+ 0.10xt−9 − 0.03xt−13 − 0.10xt−16



Predicting monthly sunspots: 6 months ahead
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Predicting monthly sunspots: 6 months ahead

Future values can be predicted with the following equation:

xt = 0.00 + 0.40xt−1 + 0.16xt−2 + 0.13xt−3

+ 0.19xt−4 + 0.12xt−5 + 0.11xt−6 + 0.84xt−7

+ 0.07xx−9 − 0.11xt−13 − 0.06xt−14

− 0.09xt−15 − 0.2xt−16



Predicting monthly sunspots: 12 months ahead
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Predicting monthly sunspots: 18 months ahead

1750 1800 1850 1900 1950 2000

0
50

10
0

15
0

20
0

25
0



Predicting monthly sunspots: 24 months ahead
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Predicting monthly sunspots with SISAL

Take a look at an example:

◮ library(sisal)

◮ sunsp <- laggedData(sunspot.month, 0:10, 1)

◮ sunsp$X[1:5,]

◮ sunsp$y[1:5]

◮ spmodel <- sisal(sunsp$X, sunsp$y, Mtimes=10,

kfold=5)

◮ names(spmodel)

◮ plotSelected(spmodel)



Linear prediction with missing data

Brief summary of the surprising results:

◮ Indrė Žliobaitė, Jaakko Hollmén. Optimizing regression
models for data streams with missing values. Machine
Learning, 99(1), 47-73, April 2015.
http://dx.doi.org/10.1007/s10994-014-5450-3

http://dx.doi.org/10.1007/s10994-014-5450-3


Linear prediction with missing data

Brief summary of one particular problem in missing data:

◮ Think of the problem, when you train your prediction
model by regression with full data (no missing data)

◮ In deployment, you have missing data in prediction

◮ Scope of this work: On-line analysis, model-based
imputation is not possible (limitations on energy or
computational power)

◮ Surprising result: predictions are very soon useless, with
very little missing data



Linear prediction with missing data

Estimation according to the principle of least-squares

~̂βOLS = argmin
~β

(

(~y − X~β)T(~y −X~β)
)

= (XTX)−1XT ~y

With Regularization: Ridge Regression, Weight Decay

~̂βRR = argmin
~β

(

(~y −X~β)T(~y − X~β) + λ~βT~β
)

= (XTX+ λI)−1XT~y



Linear prediction with missing data

Assume a single probability of any variable missing: p

◮ Then: β̂ROB =
(

(1− p)XTX+ pnI
)

−1
XTy

Probabilities of ith variable missing:
p = (pi) = (p1, p2, . . . , pr )

T .

◮ β̂ROB =
(

XTX(I− diag(p)) + diag(p)n
)

−1
XTy



Hands-on exercise with R package SISAL

Sequential Input Variable Selection Algorithm

◮ Long-term time-series prediction:
x̂t+k = f (xt , xt−1, xt−2, . . . xt−d+1)

◮ Select Input variables in the model simultaneously

◮ Bootstrapping for uncertainty estimation

◮ Make informed choices taking uncertainty into account

◮ Parsimionious, or sparse models



Hands-on exercise with R package SISAL

The R Project for Statistical Computing

◮ R is a free software environment for statistical computing
and graphics

◮ https://www.r-project.org

◮ Active ecosystem, widely used

The Comprehensive R Archive Network

◮ Network of servers that store identical, up-to-date,
versions of code and documentation for R

◮ https://cran.r-project.org/

◮ Currently, 8178 available packages

◮ ”Climate”, 23 packages

◮ ”Solar”, 8 packages

https://www.r-project.org
https://cran.r-project.org/


Hands-on exercise with R package SISAL

Sequential Input Selection Algorithm (SISAL)

◮ Available from CRAN

◮ http://CRAN.R-project.org/package=sisal

http://CRAN.R-project.org/package=sisal


Hands-on exercise with R package SISAL

Basic commands in R

◮ quit()

◮ hello <- "World"

◮ a <- 3.14

◮ a <- a + 1

◮ vec <- c(1,2,3)

◮ print(hello)

◮ List all variables: ls()

◮ Remove all variables: rm(list=ls())



Hands-on exercise with R package SISAL

Useful commands for the exercise:

◮ Load package SISAL: library(sisal)

◮ Load package SISAL: library("sisal")

◮ Help with the SISAL package: help("sisal-package")

◮ Run a simple test run: sisalTest()


