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Time Series Prediction: Introduction

Some useful methods for time series analysis and prediction:
» Wavelets
» Fourier analysis, FFT, DFT, Goertzel algorithm
» Dynamical models

» Probabilistic models: Hidden Markov Models, Kalman
filters, Dynamic Bayesian Networks

» Empirical mode demposition, SAX (Symbolic Aggregate
Approximation)

How to choose an appropriate method for your problem?



Time Series Prediction: Introduction

Two roles in data analysis:
» Users of data analysis: tools, understanding of methods
» Developers of data analysis: understanding of theory,
making tools
Interdisciplinary research:
» Experts in the domain, like space physics
» Experts in data analysis
» Data analysis is not a service, but a collaboration!
» Think what you can achieve together, before the
experiment!



Curse of Dimensionality




Curse of Dimensionality

Curse of dimensionality is a fundamental law in data analysis

» Assume a d-dimensional unit hybercube (side equals 1),
with Volume V4 = 19,

» Internal points are points if they are within a cube, side
equals 1 — ¢, with € > 0, with Volume V;_, = (1 — ¢)¢

» Data is uniformly distributed in the cube

» Ratio of internal points to all points is
R= Vl?;( = (1I;)d =(1—¢)

» If dimensions grow without bound: limy_,.(1 —€)4 — 0.

This means (no matter how small our € is) that in very high
dimensions all the points are on the surface of the cube!



Boostrapping for Uncertainty Estimation

The average of the data set:
» Data Set: X ={1.0,1.3,2.7,4.9,5.1}
» Sum of the data points: 3> x; = 15
» Average value: %ZLI x; =3.0
Can we quantify the uncertainty of the average value?
» Answer: Bootstrapping, sampling with replacement
» Sample several data sets (N=5) with replacement
Example 1: X* ={1.0,1.0,2.7,4.9,5.1}
Example 2: X* ={1.0,1.3,2.7,4.9,5.1}
Example 3: X* = {1.3,1.3,2.7,4.9,4.9}
and calculate the average for each data set to get a
empirical distribution of the average value
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Generalization

/

» Generalization refers to the ability to generalize to unseen
data points measured in the future

» The aim of predictive modeling is to generalize, not to
describe the data set at hand

» A perfect fit?



Generalization

/

» Generalization refers to the ability to generalize to unseen
data points measured in the future

» Overfitting: fitting to training data too well, not being
able to generalize

» New data arrives..



Cross-validation for model assessment

» Anticausality: we can not optimize with regard to future,
unseen data points

» We can simulate this situation: cross-validation!

» Divide the data into a training data and hold-out data,
that is kept hidden from the data analyst

» Measure the model performance: training data set

» Measure the model performance: hold-out data set, or
sometimes called the validation set, or the test set



Cross-validation for model assessment

Example: 10-fold cross-validation repeated 2 times
» Divide, or partition the data into ten parts

» Use nine parts for training, one part is a hold-out set,
repeat 10 times for each choice of a hold-out set

» repeat twice, second time with a new partition
Fold 1Fold 2 . ..

Partition 2
Partition 1
You can estimate the errors based on 20 modeling efforts:

» 20 estimates for the training set, 20 for the hold-out set

» The hold-out sets emulate or mimic the future, unseen
data sets




Time Series: Some Examples
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Strategies: Time Series Prediction

v

Turning the time series prediction problem into (a kind
of ) a static regression problem

» Autoregressive time series prediction model
> Xey1 = F(Xey Xe—1, Xe—2,« - s Xe—d—1), [ linear
» Takens theorem

Take a look at an example:
» Consider a time series: X = {1,2,3,4,5,6,7,8}
» library(sisal)
» laggedData(1:8, 0:3, 1)
» laggedData(sunspot.month, 0:10, 1)



Strategies: Time Series Prediction

Choices to implement or use the regression model:
» Recursive Prediction Strategy
» Direct Prediction Strategy
» And variants



Recursive Prediction Strategy

Predictions are made one step-ahead at the time:
> Xep1 = f(Xn Xt—1, Xt—2, - - -Xt—d+1)
> Reyo = f()?t—l—l; Xty Xp—1, Xp—2, - - ‘Xt—d)
» Benefits: Only one prediction model f to estimate
» Disadvantages: Accumulation of errors in each step



Direct Prediction Strategy

Predictions are made k steps ahead at once:

> Repk = fi(Xe, Xeo1, Xe—2, - Xe—dy1)
» Benefits: The problem of k steps ahead prediction is
solved directly

» Disadvantages: Must train a model f, for each k
Take a look at an example:

» Consider a time series: X = {1,2,3,4,5,6,7,8}

» library(sisal)

» laggedData(1:8, 0:3, 3)

» laggedData(sunspot.month, 0:10, 6)



Time Series Prediction: Long-term Prediction

What is long-term prediction depends on the context!
» Interesting phenomena vary from milliseconds to centuries
» Prediction further into the future is more difficult

» Direct Prediction Strategy is preferred



Sequential Input Selection Algorithm (SISAL)

Let us assume that there are N measurements available from a
time series x;, t =1,..., N. Future values of time series x;
are predicted using the previous values x;_;, i =1,... /. If
the dependency between the output x; and the inputs x;_; is
assumed to be linear it can be written as

|
Xt = Zﬁixt—i + &4, (1)
i=1

which is a linear autoregressive process of order / or briefly
AR(/). The errors ¢, are supposed to beindependently
normally distributed with zero mean and common finite
variance ¢, ~ N(0, 02).



Sequential Input Selection Algorithm (SISAL)

Linear model as a predictor:
» Using linear prediction models implicity implies
linearization of the system
» Validity of assumptions of the linear model?
» Simple, too simple?
» You can build non-linearity on top of linearity afterwards



Input Variable Selection in Time Series Prediction

Start with a time series model with a lot of variables:

>

You don't really know which ones are the correct model
variables

You want to reduce complexity (curse of dimensionality)

Perform Variable Selection to reduce the number of
variables

SISAL implements input variable selection in time series
models



Input Variable Selection in Time Series Prediction

Input Variable Selection: Search Strategies
» Forward-selection: greedily add variables
» Example: {} = {x1} = {x1, x5} ...
» Backward selection: greedily remove variables
» Example: ... — {x1,xs,%} = {x1, %} = {xa} = {}
» And a lot of variants . ..



Input Variable Selection in Time Series Prediction

SISAL uses Backward Selection Type of Search Strategy
» Start with a full model, remove variables

» Important Point: take uncertainty into account (by
bootstrapping)

» Advantage: you include all the variables in the beginning

» Disadvantage: you may end up with large models in the
beginning (use regularization)



Input Variable Selection in Time Series Prediction
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Input Variable Selection in Time Series Prediction
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Input Variable Selection in Time Series Prediction
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Predicting monthly sunspots: 1 month ahead
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Predicting monthly sunspots: 1 month ahead

Future values can be predicted with the following equation:

x; = 0.00 + 0.56x;_1 + 0.11x; 5 4+ 0.10x;_3
+ 0.09Xt_4 + 0.04Xt_5 + 0.0?Xt_6
+ O.].OXt_g - 0.03Xt_13 - O.].OXt_]_ﬁ



Predicting monthly sunspots: 6 months ahead
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Predicting monthly sunspots: 6 months ahead

Future values can be predicted with the following equation:

x; = 0.00 + 0.40x;_1 + 0.16x;_2 4+ 0.13x;_3
4+ 0.19%;_4 + 0.12x;_5 + 0.11x;_¢ + 0.84x;_7
4+ 0.07x_g — 0.11x;_13 — 0.06x;:_14
—0.09x;:_15 — 0.2x;_16



Predicting monthly sunspots: 12 months ahead
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Predicting monthly sunspots: 18 months ahead




Predicting monthly sunspots: 24 months ahead
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Predicting monthly sunspots with SISAL

Take a look at an example:

>

>

>

library(sisal)

sunsp <- laggedData(sunspot.month, 0:10, 1)
sunsp$X[1:5,]

sunsp$y [1:5]

spmodel <- sisal(sunsp$X, sunsp$y, Mtimes=10,
kfold=5)

names (spmodel)
plotSelected(spmodel)



Linear prediction with missing data

Brief summary of the surprising results:

» Indré Zliobaité, Jaakko Hollmén. Optimizing regression
models for data streams with missing values. Machine
Learning, 99(1), 47-73, April 2015.
http://dx.doi.org/10.1007/s10994-014-5450-3


http://dx.doi.org/10.1007/s10994-014-5450-3

Linear prediction with missing data

Brief summary of one particular problem in missing data:

» Think of the problem, when you train your prediction
model by regression with full data (no missing data)

» In deployment, you have missing data in prediction

» Scope of this work: On-line analysis, model-based
imputation is not possible (limitations on energy or
computational power)

» Surprising result: predictions are very soon useless, with
very little missing data



Linear prediction with missing data

Estimation according to the principle of least-squares

=, —,

Bovs = arg mﬁin <()7— XB)"(y — Xﬁ)) = (XTX)I X" y
With Regularization: Ridge Regression, Weight Decay

e = argmin (7~ X3)" (7~ X7) +A7'7)

= (X"X + A)IXTy



Linear prediction with missing data

Assume a single probability of any variable missing: p
» Then: Brog = (1—p)XTX + pnl)_1 XTy
Probabilities of ith variable missing:
p=(pi) = (pP1,p2, .. -,Pr)T-
> Bros = (XTX(1 — diag(p)) + diag(p)n)_1 XTy



Hands-on exercise with R package SISAL

Sequential Input Variable Selection Algorithm
» Long-term time-series prediction:
Repk = f(Xta Xp—1, Xt—2, - - -Xt—d+1)

Select Input variables in the model simultaneously

v

v

Bootstrapping for uncertainty estimation

v

Make informed choices taking uncertainty into account

» Parsimionious, or sparse models



Hands-on exercise with R package SISAL

The R Project for Statistical Computing
» R is a free software environment for statistical computing
and graphics
» https://www.r-project.org
» Active ecosystem, widely used
The Comprehensive R Archive Network

» Network of servers that store identical, up-to-date,
versions of code and documentation for R

v

https://cran.r-project.org/

v

Currently, 8178 available packages

v

"Climate”, 23 packages

v

"Solar”, 8 packages


https://www.r-project.org
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Hands-on exercise with R package SISAL

Sequential Input Selection Algorithm (SISAL)
» Available from CRAN

» http://CRAN.R-project.org/package=sisal


http://CRAN.R-project.org/package=sisal

Hands-on exercise with R package SISAL

Basic commands in R
» quit()
» hello <- "World"
» a <- 3.14
» a<-a+1
vec <- ¢(1,2,3)
print(hello)
List all variables: 1s()

Remove all variables: rm(1ist=1s())
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Hands-on exercise with R package SISAL

Useful commands for the exercise:

Load package SISAL: library(sisal)

Load package SISAL: library("sisal")

Help with the SISAL package: help("sisal-package")

v

v

v

v

Run a simple test run: sisalTest()



