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Statistics
Prologue/Esipuhe

hlehto@utu.fi



  

Very basic stats

Testing hypothesis:
Accept or
Reject
Critical limits 0.05,0.01 0.001 
One or two sided?



  

 

● Test single r.v. (t-test) 
● Test (r.v)^2  (χ2-test, analysis of variances)
● Test r.v./√(χ2/DF)  (t-test)
● Test (χ2/DF1)/(χ2/DF2) (F(k,m) -test)

● DF, DOF, ν (usually N  (minus) parameters needed 
for fit)

● Discrete: Poisson, Beta and hypergeometric 
distributions.



  

● In a (x,y) data set, you can tell if a constant 
value is accepted (eg. p<0.01)

● Or a linear slope is accepted (eg. p<0.01)
● You can even check if a 2nd order polynomial 

gives you a good fit (e.g p<0.001)

● But you cannot tell which one of these is the 
best fit. You cannot compare directly the p's 
above in the frame of classical analysis

END OF PROLOGUE!
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Long datasets, 
noise, sampling

Harry J  Lehto
University of Turku

Department of Physics and Astronomy
 Tuorla Observatory
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~10²-~10  data points, ⁴
stationary, 

some white noise,
 evenly sampled

● Not heavy on computer (N not too large)

● Get reasonable statistics (N not too small)

● Easy to visualize (fits on one screen)

● Noise well behaving (white noise does not mean it is 
Gaussian!)

● No correlated noise 

● Data set is well behaving (in general)

● Rigorous mathematics works generally
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Analysis

● x, s², DF

● Wavelets

(assume n→ infty)
● Structure functions
● FFT, DFT
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x,s², DF

● x, DF = n-1
● s², DF = n-2
● Sample mean and standard deviation. What are the true 

mean and standard deviations?
● Note: 

– no assumptions on the properties of x, or s².

– x, and s² have Gaussian distributions due to central limit 
theorem (when N is large enough).

– DF usually straightforward
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● Breaking time series into Fourier components

    F(ν)=∫
-∞

∞
f(t)e

-j2πνt
dt

● For discrete cases

F(νi)=Σ
all k 

f
k
e

-j2πνitkdtk

– Reversible, with suitable sampling
● Several variations. Some more suitable for noise and some signal 

searching. 
● DFT is a nlogn process, FFT is a n² process
● Stationarity expected in principle
● Power spectrum = F(ν)F*(ν) – phase conserving, 

– or as Fourier transform of autocovariance function – phase destroying.

FFT, DFT
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T Uma /SVSO
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TUMa
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Structure functions

● D(τ)=(x(t+τ)x(t))²,
● Used to determine the type of (red) 

noise 
● Does not need to be stationary
● D(τ)=(x(t+2τ)2x(t+τ)+x(t))²

Second order structure function 

= Allen variance
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D(τ)

Adopted

Hovatta et al  A&A 469, 899–912 (2007)
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Wavelets

● Local analysis – as a function of time 
location and timescale

● g*(f,τ) = exp(−icf(t − τ)−(f(t − τ))²)
transform

● W(f,τ) = f·(S²(f,τ)+C²(f,τ)) power
● Wavelet transform is reversible with 

suitable sampling
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T UMa

Data from SVSO/URSA 
variable star observers 
data base
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Morelet and D
4
 

wavelets
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Linear regression

● Special example:

– Easy to do with a calculator
– Note the least squares linear regression is 

valid when
● x is known in principle exactly
● y is a random sample drawn from a 

Gaussian sample centered on the true y – 
usually from the same Gaussian distribution. 

● But this has potentially some serious 
problems. 
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Some real cases and challenges



20160401 Levi  19

Sample average 
and variance: 

OJ287

Tuorla obswervatory 
OJ287 database
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DFT

● Uneven sampling causes sidelobes
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DFT/CLEAN
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FFT

● Fill small gaps
● Interpolate
● Taper
● No good solutions for interpolation
● Pathological features if trying to recover the 

original attempted

● Works well for 2
n
 data points
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Structure function
A&A 469, 899–912 (2007)
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Structure function
A&A 469, 899–912 (2007)



20160401 Levi  27

Wavelets
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Variable oscillating 
frequency
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Linear regression

● There are at least 6 ways of doing a linear regression
● Sometimes you have to linearize first
● OLS(x|y) is the normal ordinary least squares, but you can have 

also 

– OLS(y|x)
– Bisector
– Geometric mean of  OLS(y|x) and OLS(x|y)
– Arthmetic mean of OLS(y|x) and OLS(x|y)
– orthogonal minimization min(x²+y²)

– Note that all these pass through x, y and only the slope varies

– Note that all these have the same correlation coefficient (which 
really does not depend on the fit in any way)
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Bayes
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● Now go to another pdf and then back to this...



SEPARATING NON-ORGANIC AND ORGANIC PEAKS

Harry Lehto and Boris Zaprudin

Tuorla Observatory, Dept of Physics and Astronomy, 
University of Turku

Kirsi Lehto Biochem, Univ of Turku
Johan Silén FMI
Tuomo Lönnberg Biochem, Univ of Turku

Adopted from Glurns, Italy talk May 2014
And pictures from: 
Lehto et al. Geosci. Instrum. Method. Data Syst., 4, 139-148, 2015 
http://www.geosci-instrum-method-data-syst.net/4/139/2015/  

doi:10.5194/gi-4-139-2015 , which see!



                                            COSIMA TEAM



Hottin et al, EPSC Abstracts Vol. 10, EPSC2015-481, 2015European Planetary Science Congress 2015



A&A 469, 899–912 (2007)

Hilchenbach, M et al : ApJL 469, 816:L32 (6pp) (2016)



BAYESIAN METHOD –  SIMPLIFIED IDEA

You know something:
Measured data*
You know your noise distribution (poisson*)
You know that your peaks are 

in a well tuned instrument
In shape close to Gaussian*
Can have multiple peaks*
Usually of similar width in tof*
Usually concentrated close to integer mass*
Usually have a couple of peaks 0-4.
Usually you can make a reasonable guess

from the observed data 

Given the data you find out optimal parameters for your models
Note you DO NOT KNOW what is the ”true” data. 

Traditional analysis is that your observations are the ”true data”, 
find the optimum model.

Bayesian method tries to find the model that best explains what you 
have observed, and realized that your data is just a reflection of the reality. 
 



For our data: 

Baseline + several line shapes(height, width, center) and 
modelled noise which depends (or not) on the 
points above by some functional form 
calculate the probability of an observed data point.  

Sum all observed probabilitties to get p
i

If larger than p
i-1

 from previous round accept this round.

If p
i
 worse than pervious p

i-1
 then calculate 

q, a random point from U[0,1). 
If q >p

i
/p

i-1
, then accept as a new guess.

Change your parameters a little bit and return to start of the loop

Continue until convergence has been achieved for given models.

Apply Occam's razor to estimate the validity of different models.   



What you don’t get or do with Bayesian approach
-Have negative nonsense values
-Calculate your limits with 

Gaussian distribution
-Assume or claim symmetric errors 

                              or confidence limits 

-Claim that this as a
”whatever sigma detection”, but

 
           rather you use confidence limits calculated 

in a correct way.



Get  a model

Include deadtime effects and other distortions

Do not add noise to the data points

Calculate with what likelihood your model 
explains the observed data with the observed 
confidence limits 

Using the correct measuring errors and 
binning.

Next a couple of examples.



DEAD TIME EFFECTS

Number of count/shots
0.5     stronger line
0.05   fainter line 



CS 2D8 20100509T194035 SP P.TAB

19.0130 ?: F+ 18.9984 Da, 
HDO+19.052 Da, ?



26Mg,12C
2
H

2
:   1000 counts vs 100 counts

25.982593,26.015650



CS 2D8 20100509T194035 SP P.TAB.



Mass 100.00, 100.035,  separation 2.7, 5200, 520
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